(J OneSpan

Orchestration SDK

Integration Guide

Version: 5.7

Copyright Notice

Copyright © 2013-2023 OneSpan North America, Inc. All rights reserved.

Trademarks

OneSpan™, DIGIPASS® and CRONTO® are registered or unregistered trademarks of OneSpan North America Inc.,
OneSpan NV and/or OneSpan International GmbH (collectively "OneSpan") in the U.S. and other countries.

OneSpan reserves all rights to the trademarks, service marks and logos of OneSpan and its subsidiaries.

All other trademarks or trade names are the property of their respective owners.

Intellectual Property

OneSpan Software, documents and related materials (“Materials”) contain proprietary and confidential information.
All title, rights and interest in OneSpan Software and Materials, updates and upgrades thereof, including software
rights, copyrights, patent rights, industrial design rights, trade secret rights, sui generis database rights, and all other
intellectual and industrial property rights, vest exclusively in OneSpan or its licensors. No OneSpan Software or Mater-
ials may be downloaded, copied, transferred, disclosed, reproduced, redistributed, or transmitted in any form or by
any means, electronic, mechanical or otherwise, for any commmercial or production purpose, except as otherwise
marked or when expressly permitted by OneSpan in writing.

Disclaimer

OneSpan accepts no liability for the accuracy, completeness, or timeliness of content, or for the reliability of links to
and content of external or third party websites.

OneSpan shall have no liability under any circumstances for any loss, damage, or expense incurred by you, your com-
pany, or any third party arising from the use or inability to use OneSpan Software or Materials, or any third party
material made available or downloadable. OneSpan will not be liable in relation to any loss/damage caused by modi-
fication of these Legal Notices or content.

Reservation

OneSpan reserves the right to modify these Notices and the content at any time. OneSpan likewise reserves the right
to withdraw or revoke consent or otherwise prohibit use of the OneSpan Software or Materials if such use does not
conform to the terms of any written agreement between OneSpan and you, or other applicable terms that OneSpan
publishes from time to time.

Contact us

Visit our website: https://www.onespan.com
Resource center: https://www.onespan.com/resource-center
Technical support and knowledge base: https://www.onespan.com/support

If there is no solution in the knowledge base, contact the company that supplied you with the OneSpan product.

Date: 2023-08-21

https://www.onespan.com/
https://www.onespan.com/resource-center
https://www.onespan.com/support

Contents

TIntroduction ...l 1
2 What's new in the Orchestration SDK ... 2
20 Version 5.7.0 o 3
2.2 PreVIOUS VEISIONS ..o 4
3 Using the Orchestration SDK ... 7
3.1 Overview of the Orchestration SDK 8
3.2 Features of the Orchestration SDK ... 10
4 Integrate the Orchestration SDK ... 36
4.1 Integrating OneSpan Orchestration SDK with Android ... 37
4.2 Integrating OneSpan Orchestration SDKwithiOS ... 40
5 Exposed APIs in the Orchestration SDK ... 42
5l GO 43
5.2 ACHIVAtION ... 46
5.3 Notification registration ... 47
5.4 Remote authentication 48
55 Remote transaction ... 49
5.6 Local authentication ... 50
5.7 Local transaction ... 52

5O Change PassWOId o 60

510 Device data colleCtion ... 61
511 MuUlti-user management 63
I X 64

Figures

Figure 1: Orchestration example — remote authentication overview 8
Figure 2: Activation Workflow .. n
Figure 3: Notification registration workflow ... 14
Figure 4: Remote authentication workflow 17
Figure 5: Remote transaction workflow ... 21
Figure 6: Local authentication workflow ... 24
Figure 7: Local transaction workflow 26
Figure 8: Authentication using a virtual Keypad ... 28
Figure 9: Authentication using biometric recognition ... 29
Figure 10: External user authentication workflow 30
Figure 11: Change password workflow ... 33

Tables

Table 1: Virtual keypad - Text customization Keys 54
Table 2: Biometric reCoOgnitioN ... 54
Table 3: Virtual keypad - Color customization Keys 55
Table 4: Virtual keypad - Font size customization keys 55
Table 5: Virtual keypad - Graphical elements customization keys for iOS 55
Table 6: Virtual keypad - Font customization for Android ... 56
Table 7: Virtual keypad - Drawable element customization for Android 56
Table 8: Virtual keypad - Background customization for Android 57

Procedures

Activation workflow of OneSpan Orchestration SDK ... 12
Notification registration workflow ... 15
Remote authentication Workflow 17
Remote transaction workflow ... 21
Local authentication workflow ... 24
Local transaction Workflow ... 26
User authentication flowW 31
Change password WOrKIIOW ... 33
To use OneSpan Orchestration SDK in your Android project 37

Using OneSpan Orchestration SDK in your iOS project ... 40

Introduction

Welcome to the Orchestration SDK Integration Guide! This document describes how
to integrate the Orchestration SDK.

This document provides information about:
¢ Features of the Orchestration SDK
e Exposed APIs

¢ |Integration steps

What's nhew in the Orchestration SDK 2

This section provides an overview of changes introduced in the Orchestration SDK
to facilitate the integration of the SDK and provide information on backward com-

patibility.
2.1 Version 5.7.0 3
2.2 Previous versions 4

2.1 Version 5.7.0

2.1.1 Android

Updated readme file

The readme file in the product package has been improved to include more com-
prehensive steps and configuration options.

212 iOS

Bitcode support has been eliminated

Following the deprecation of Bitcode by Apple, we no longer support and have
removed all Bitcode from the SDK framework.

2.2 Previous versions

2.2.1 Version 5.6.3

Android
Target APl increased to 33

To meet new requirements for apps published on the Google Play Store, the tar-
get version of the SDK has been increased to Android 13 with API level 33. This
change is needed to avoid APK rejection caused by security issues found with
older API versions.

2.2.2 Version 5.6.2 (hotfix)

Access Group required for orchestration

On i0S, to avoid an issue reported by a customer related to the Device Binding
Access Group, we introduced a change in the implementation procedure. As of
this release, it is mandatory to provide an access group when creating an orches-
tration. For existing integrations, the AppPrivate access group must be used for
activated users when creating an orchestration.

2.2.3 Version 5.6.0

Android
Target API increased to Android 12 (API 31)

To meet new requirements for apps published on the Google Play Store, the tar-
get version of the SDK has been increased to Android 12 with API 31 or higher.
This change is needed to avoid APK rejection caused by security issues found
with the older API versions.

Minimum supported version increased to Android 6 (API 23)

The minimum supported version has been increased to fully support new fea-
tures and devices. Deprecated code has been replaced and simplified to be com-
patible with API 23 or higher.

iOS
Increased the minimum supported version to iOS 13

The minimum supported version has been increased to fully support all ARM64
devices and SwiftUl features. Deprecated code has been removed and replaced

with code fully supporting iOS 13 or higher.

Fixed internal error conversion issues

Error codes converted between Objective-C and Swift need to have the
NSCustomError setting implemented to display the correct value. Without this set-
ting, the wrong codes could be displayed from the enum. The setting has been
implemented in all the remaining error handling objects.

2.2.4 Version 5.5.1

Android

Maven repository

The Orchestration SDK and its Mobile Security Suite dependencies are now
delivered exclusively through a local Maven repository. Due to this, you need to

perform the following steps:

¢ Indicate the URL to the maven folder in the gradle as an available repository.
¢ |Indicate the Orchestration SDK as a dependency with the following line:

api 'com.onespan:sdk_orchestration_android:<version>'

Refer to the Android sample included in the product package for full code

examples.

iOS
Change of framework name to MSSOrchestration

The framework name has been changed from OrchestrationSDK to MSSOrches-
tration. To use the new Objective-C API, replace all previous OrchestrationSDK
imports with #import <MSSOrchestration/MSSOrchestration.h>

APl updates — NSErrors API support for Objective-C added

The Objective-C API points no longer throw an NSException. All API points that pre-
viously would throw such an NSException now require an NSError pointer. If an error
occurs, it will be attached to the pointer that is provided as a parameter. Refer to
the Objective-C sample included in the product package for full code examples.

Using the Orchestration SDK

The Orchestration SDK enables mobile developers to integrate the main features
provided by OneSpan Mobile Security Suite.

3.1 Overview of the Orchestration SDK 8

3.2 Features of the Orchestration SDK 10

3.1 Overview of the Orchestration SDK

The SDK consists of a client component. This component interprets the orchestration
commands and executes them in a mobile application, fully hiding the complexity of
the secure features’ integration. The encoding and decoding of the orchestration com-
mands is transparent to the mobile application.

Figure Tillustrates an example of orchestration. It provides an overview of the Remote
Authentication feature. If there is a risk for a given login request (e.g. unknown com-
puter), the OneSpan Trusted Identity platform (TID) can dynamically request a step-up
authentication on the mobile application using an authentication method (e.g. bio-
metric recognition) that has been previously defined for that type of risk.

OneSpan Adaptive
Orchestration SDK Authentication
Service

Login Request————————»

Evaluate Risk—————»
<« Remote Authentication Request-

< Execute Request-

Authenticate User (PIN / Fingerprint / Face)

Provide Response——————

———Remote Autl

Validate Response————»

<« Logged in

Figure 1: Orchestration example - remote authentication overview

3.1.1 Supported platforms and requirements

The Orchestration SDK supports the following platforms for an integration in a mobile
application:

Android devices:
e Minimum Android 6 (API level 23)

¢ Target Android 13 (API level 33)

iOS devices:

¢ iOS 13 or higher
e Swift 5.0 or higher

e Xcode 14 or higher

For more information about the Orchestration SDK features and functionalities, refer
to 3.2 Features of the Orchestration SDK.

3.2 Features of the Orchestration SDK

This chapter describes the main features and functionalities of the Orchestration SDK.
The features are illustrated using workflow diagrams, and involve the following com-
ponents:

¢ Orchestration SDK

NOTE: For more information on the users and device commmands, refer to the
TID Platform API Sandbox.

» Customer Mobile Application. Your mobile application which integrates the
Orchestration SDK.

¢ User. The individual using the Customer Mobile Application on their mobile
device.

* Customer Website. Your website which users can access to perform sensitive
actions (e.g. initiating an authentication request).

e Customer Application Server. Your server component which exposes Web ser-
vices accessed by the Customer Mobile Application and the Customer Website.

NOTE: Some server infrastructure considerations have been omitted on purpose in
this document to ease the understanding of the features (e.g. front end/back end,
database etc.).

In the next sections, these points will be considered as properly integrated in the Cus-
tomer Application Server.

* OneSpan Trusted Identity platform. A server component provided and hosted
by OneSpan, which handles the server features of the Orchestration SDK.

» Push Notification Service. Notification service provided by Apple and Google,
which can send push notification messages to Android and iOS devices.

10

https://community.onespan.com/products/intelligent-adaptive-authentication/sandbox#

3.2.1 Activation

With the activation feature of the Orchestration SDK you can provision authenticator
instances to the Customer Mobile Application by securely exchanging activation data
with OneSpan Trusted Identity platform. The activation process is initiated on the Cus-
tomer Website, and then continued and completed using the Customer Mobile
Application. Four network requests are required between the Customer Mobile Applic-
ation and the Customer Application Server to complete the activation process.

The activation process will provision two authenticator instances in the Customer
Mobile Application. For security reasons, each authenticator instance will be linked to
a given authentication method: one instance for the password authentication method
and another for the other authentication methods (No password and biometric recog-
nition).

For more details concerning the authentication methods, see 3.2.7 Authentication
methods.

Orchestration OneSpan Adaptive
SDK Authentication
Client Service

Register (User Identifier, @
Static Password) >
Register (User Identifier, | @
Static Password) registar
(User Identifier, > @
Static Password)
® .
@ < Activation Password
le i
(User Identifier, Activation Password)
le startActivation
(User Identifier, Activation Password)
Define PIN- >
|
onfirm
onActivationstepComplete
>
(Command)
[Transmit (Command) >
orchestration-commands N
(Command) @
“ Command
@ < Command
< execute
(Command)
onActivationstepComplete
»
(Command)
{Transmit (Command) >
orchestration-commands
>
(Command)
“« Command
L execute [« Command
(Command)
onActivationstepComplete
»
(Command)
{Transmit (Command) >
orchestration-commands N
(Command)
@ < Command
’ execute < Command
(Command)
onActivationStepComplete |
(Command)
Transmit (Command} i orchestration-commands N
(Command)
« Command
L execute « Command
(Command)
@ onActivationSuccess »
(Command)

Figure 2: Activation workflow

L

» Activation workflow of OneSpan Orchestration SDK

10.

11.

12.

The user initializes an activation session via the Customer Website, by providing
their user identifier and static password.

The Customer Website transmits the user identifier and the static password to
the Customer Application Server.

The Customer Application Server calls the https://{tenant}.
{environment}.tid.onespan.cloud/vl/users/register endpoint from the OneSpan
Trusted Identity platform API by providing their user identifier and the static pass-
word. In case of success, the web service returns the activation password.

The Customer Application Server notifies the Customer Website that registration
has been completed.

The Customer Application Server transmits the activation password to the user
via a channel other than the network (e.g. by sending an SMS message or an e-
mail). The activation password remains valid for 10 minutes.

The user enters their user identifier and the activation password in the Customer
Mobile Application to start the activation process.

The Customer Mobile Application calls the startActivation method of the Orches-
tration SDK to start the activation process.

The Orchestration SDK displays a virtual keypad or calls the password user
authentication flow, where the user can define their password, and confirm it.

The Orchestration SDK builds the first orchestration command required for the
activation process and transmits it to the Customer Mobile Application using the
onActivationStepComplete method.

The Customer Mobile Application transmits the orchestration command to the
Customer Application Server.

The Customer Application Server calls the orchestration-commands Web service of
the OneSpan Trusted Identity platform by providing the orchestration command.
A new orchestration command is returned as a result.

The Customer Application Server transmits the orchestration command to the
Customer Mobile Application as a response to the previous request.

12

https://community.onespan.com/products/onespan-cloud-authentication/sandbox#/Users/userRegisterUsingPOST
https://community.onespan.com/products/onespan-cloud-authentication/sandbox#/Users/userRegisterUsingPOST

13. The Customer Mobile Application calls the execute method of the Orchestration
SDK to continue the activation process.

14. A second activation step repeats steps 9 to 13.
15. A third activation step repeats steps 9 to 13.
16. A fourth activation step repeats steps 9 to 13.

17. The Orchestration SDK finalises the activation process and transmits the status to
the Customer Mobile Application using the onActivationSuccess method.

18. The Customer Mobile Application notifies the user that the activation has been
successfully completed.

NOTE: 3.2.2 Notification registration is required to finalize activation.

After a successful activation process, the Customer Mobile Application can use the
other features of the Orchestration SDK (e.g. authentication, notification registration
etc.).

See 5.2 Activationfor more information how to integrate this feature.

3.2.2 Notification registration

To be able to use push notification messages for remote authentication and remote
transactions, the Customer Mobile Application must complete a notification regis-
tration process.

Notification registration consists in obtaining a notification identifier from the Push
Notification Service, and in transmitting it to the OneSpan Trusted Identity platform
via a dedicated orchestration commmand. The notification identifier is unique per
device and per app.

For more information, refer to the Notification SDK Integration Guide.

The notification registration process can only be completed if the Customer Mobile
Application has been activated (see 3.2.1 Activation); this process must take place
after a successful activation (mandatory for finalizing the activation flow on the server-
side) and at application startup (only if the notification identifier has changed).

13

CAUTION: Notification registration is mandatory for finalizing the activation process
on the server-side.

Figure 3 illustrates the notification registration workflow.

O A OneSpan Adaptive Push
Notification Orchestration pan Acap P
Authentication Notification
SDK SDK - a
Service Service

l¢ Notification Identifier ———————— o 9

Onespan Notification Identifi 3

tar
@ (User Identifier, OneSpan Notification Identifier)

omplete

(Command)

Transmit (Command)gb@

orchestration-commands
o

(Command) @
<« Command

o :
@ ute (C
onNotificationRegistrationSuccess »

Figure 3: Notification registration workflow

» Notification registration workflow

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode API documentation on NotificationRegistrationDelegate for this
workflow.

1.

10.

The Customer Mobile Application calls the registerNotificationService method of
the Notification SDK to obtain a notification identifier.

The Notification SDK contacts the Push Notification Service to obtain a noti-
fication identifier.

The Notification SDK returns to the Customer Mobile Application a OneSpan Noti-
fication Identifier, which is an abstraction of the previously retrieved notification
identifier. For more information, refer to the OneSpan Notification SDK Integration
Guide.

The Customer Mobile Application calls the startNotificationRegistration method
of the Orchestration SDK to start the notification registration process.

The Orchestration SDK builds an orchestration command which includes the
OneSpan Notification Identifier and transmits it to the Mobile Application Server
using the onNotificationRegistrationComplete method.

The Customer Mobile Application transmits the orchestration command to the
Customer Application Server.

The Customer Application Server calls the orchestration-commands Web service of
the OneSpan Trusted Identity platform by providing the orchestration command.
A new orchestration commmand is returned as a result.

The Customer Application Server transmits the orchestration command to the
Customer Mobile Application as a response to the previous request.

The Customer Mobile Application calls the execute method of the Orchestration
SDK to finalize the notification registration process.

The Orchestration SDK calls the onNotificationRegistrationSuccess method to
notify the Customer Mobile Application.

After a successful notification registration process, the OneSpan Trusted Identity plat-

form is able to send push notification messages to the Customer Mobile Application.

15

The Customer Mobile Application must integrate the other methods of the Noti-
fication SDK to properly receive and process the push notification messages sent by
the OneSpan Trusted Identity platform.

For more information about integrating this feature, see 5.3 Notification registration.

3.2.3 Remote authentication

With the remote authentication feature of the Orchestration SDK, the user can
authenticate to the Customer Website using the Customer Mobile Application, via an
authentication request initiated on the OneSpan Trusted Identity platform, and based
on the corresponding risk evaluation.

The remote authentication process is initiated using the Customer Website and eval-
uated for risk by OneSpan Trusted Identity platform before continuing with the Cus-
tomer Mobile Application.

The authentication request is embedded in an orchestration command and can be
transmitted via a push notification message initiated by OneSpan Trusted Identity

platform or by another communication channel handled by the Customer Website
(e.g.image scanning).

The authentication request contains the following parameters:

¢ A session identifier created by the Customer Application Server, which uniquely
identifies the authentication session.

¢ A request identifier created by the Customer Application Server, which uniquely
identifies the authentication request.

« An authentication method, which defines how the user must authenticate to
sign the authentication request (see 3.2.7 Authentication methods).

¢ (OPTIONAL) Data to display on the Customer Mobile Application to provide
authentication request information to the user; the user can choose to approve
or reject it.

The data to display is a string defined by the Customer Application Server, which
must be interpreted by the Customer Mobile Application.

Figure 4 illustrates the remote authentication workflow with the transmission of the
authentication request via a push notification message.

16

. OneSpan Adaptive Push
Orchestration Authentication Notification
SDK Service Service

Login (User Identifier) » @
Login
(User Identifier, >
CDDC Browser Data) @ "
login
(User Identifier,
Session Identifier, >
Data to Display, ieati
Send notification
€00C Browser ata) (Notification Identifier, >®
Command)
@4 Notification (Command)
6 J« execute (Command)
'onRemoteAuthentication StepComplete)®
Transmit (Command) >
orchestration-commands |
(Command) @
“ Command
@4 Command
@ o execute (Command)
| onRemoteAuthenticationDisplayData__ |
(Data to Display)
-~ Display data for appvwal—»@
< Approve / Reject
onDataApproved
15 r —_—
onDataRejected
Authenticate user (PIN / Fingerprint / Face) >®
OK/NOI
onRemoteAuthStepComplete
N
(Command) Transmit (Command)
orchestration-commands
(Command)
ke execute (Command)
icati 18
Il be logged i 19
() —
@r Logged in

Figure 4: Remote authentication workflow

» Remote authentication workflow

1.

The user initializes an authentication request via the Customer Website (e.g. for
login purposes), providing their user identifier.

The Customer Welbsite transmits the user identifier and the Client Device Data
Collector (CDDC) browser data to the Customer Application Server.

The Customer Application Server calls the https://{tenant}.
{environment}.tid.onespan.cloud/v1/users/{userID@domain}/login endpoint
from the OneSpan Trusted ldentity platform API by providing their user identifier,
a session identifier (dynamically generated and uniquely identifying the authen-
tication request), the received CDDC browser data, and, optionally, the data to dis-
play on the Customer Mobile Application.

The OneSpan Trusted Identity platform evaluates the risk related to the Web
browser used for the authentication request (based on multiple parameters

17

https://community.onespan.com/products/onespan-cloud-authentication/sandbox#/Users/loginUsingPOST
https://community.onespan.com/products/onespan-cloud-authentication/sandbox#/Users/loginUsingPOST

provided in the previous step and on existing parameters related to the user, e.g.
unknown country) and, in case of risk detection, initiates a step-up authen-
tication request on the Customer Mobile Application with a given authentication
method (see 3.2.7 Authentication methods).

Depending on the configuration defined in the OneSpan Trusted Identity plat-
form, multiple scenarios are possible:

¢ The authentication request can be transmitted via a push notification mes-
sage initiated by the OneSpan Trusted Identity platform and sent by the
Push Notification Service to the Customer Mobile Application. In this case, a
push notification message is sent to all mobile devices of the user where the
Customer Mobile Application is installed and activated.

¢ The authentication request can be transmitted by the Customer Application
Server via a different channel (e.g. display a Cronto image containing the
orchestration coommand related to the authentication request and scan it
with the Customer Mobile Application).

¢ The authentication request can be blocking or non-blocking.

The following steps describe a blocking scenario with the authentication request
transmitted via push notification.

. The Push Notification Service sends a push notification message containing the
orchestration command related to the authentication request to the Customer
Mobile Application.

. The Customer Mobile Application obtains the orchestration command contained
in the push notification message and calls the execute method of the Orches-
tration SDK to perform the remote authentication.

. The Orchestration SDK builds an orchestration command and transmits it to the

Customer Mobile Application using the onRemoteAuthenticationStepComplete
method.

. The Customer Mobile Application transmits the orchestration command to the
Customer Application Server.

. The Customer Application Server calls the orchestration-commands Web service of

the OneSpan Trusted Identity platform by providing the orchestration command.

A new orchestration command is returned as a result.

18

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

The Customer Application Server transmits the orchestration command to the
Customer Mobile Application as a response to the previous request.

The Customer Mobile Application calls the execute method of the Orchestration
SDK to continue the remote authentication process (only if the authentication
request is still pending).

The Orchestration SDK calls the onRemoteAuthenticationDisplayData method to
transmit the data to display to the Customer Mobile Application (if data has been
defined in step 3).

The Customer Mobile Application displays a screen to the user containing the
data to display and two buttons to approve or reject the authentication request.

The user must approve or reject the authentication request, according to the dis-
played data.

Based on the user’s decision in the previous step, the Customer Mobile Applic-
ation calls the onDataApproved or onDataRejected method of the Orchestration SDK.

In both cases, the Orchestration SDK prompts the user to authenticate by using
an authentication method defined by the OneSpan Trusted Identity platform,
based on the evaluated risk (see step 4).

The Orchestration SDK signs the authentication request, builds an orchestration
command, and transmits it to the Customer Mobile Application using the
onRemoteAuthenticationStepComplete method.

Repeat steps 8 to 1.

In case of validation by the OneSpan Trusted Identity platform, the Orchestration
SDK calls the onRemoteAuthenticationSuccess method to notify the Customer Mobile
Application.

The Customer Mobile Application notifies the user that the authentication
request has been successful and that they are about to be logged in to the Cus-
tomer Website.

The OneSpan Trusted Identity platform provides a response to the call to the
login Web service from step 3, indicating the success of the authentication
request.

The Customer Application Server transmits the success status to the Customer
Website. The user is now logged in to the Customer Website.

19

For more information about integrating this feature, see 5.4 Remote authentication.

3.2.4 Remote transaction

With the remote transaction feature of the Orchestration SDK, the user can perform a
transaction to the Customer Website using the Customer Mobile Application, via a
transaction request initiated on OneSpan Trusted Identity platform, and based on the
corresponding risk evaluation.

The remote transaction process is initiated using the Customer Website and eval-
uated for risk by the OneSpan Trusted ldentity platform before continuing with the
Customer Mobile Application.

The transaction request is embedded in an orchestration command and can be trans-
mitted via a push notification message initiated by the OneSpan Trusted ldentity plat-
form or by another communication channel handled by the Customer Website (e.g.
image scanning).

The authentication request contains the following parameters:

¢ A session identifier created by the Customer Application Server, which uniquely
identifies the transaction session.

¢ A request identifier created by the Customer Application Server, which uniquely
identifies the transaction request.

* An authentication method, which defines how the user must authenticate to be
able to sign the transaction request (see 3.2.7 Authentication methods).

e Data to display on the Customer Mobile Application to provide transaction
request information to the user; the user can choose to approve or reject it.

The data to display is a string defined by the Customer Application Server, which
must be interpreted by the Customer Mobile Application.

Figure 5 illustrates the remote transaction workflow with the transmission of the trans-
action request via a push notification message.

20

c Push
Orchestration OneSpan Adaptive 5 o
Py 5 Notification
SDK Authentication Service N
Service

Transaction Request
(User (dentifier, @ Transaction Request
Transaction Data) (User Identifier, N
Transaction Data,
CDDC Browser Data) transactions/validate
(User Identifier,
Session Identifier, >
Data to Display, -
CDDC Browser Data) Send notification
(Notification Identifier, >
Command)
onRemoteTransactionStepComplete ,@
‘ommand)
Transmit (C d) 8
orchestration-commands »
(Command) @
1 [d)
onRemoteTransactionDisplayData
(Data to Display) >
Display data for approval—b@
<7Al7nrove / Reject
onDataApproved
15 or —
onDataRejected
Authenticate user (PIN / Fingerprint / Face) >@
K/ NOK
onRemoteTransactionStepComplete
o >
(Command) Transmit (Command) >
orchestration-commands
(Command) >
(c d)
18
- Transaction will be validated%
21
(zzr Transaction validated

Figure 5: Remote transaction workflow

» Remote transaction workflow

1. The user initializes a transaction request via the Customer Website (e.g. for
money transfer purposes), providing their user identifier and the transaction data.

2. The Customer Website transmits the user identifier and the Client Device Data
Collector (CDDC) browser data to the Customer Application Server.

3. The Customer Application Server calls the https://{tenant}.
{environment}.tid.onespan.cloud/v1l/users/
{userID@domain}/transactions/validate endpoint from the OneSpan Trusted
Identity platform API by providing their user identifier, a session identifier (dynam-
ically generated and uniquely identifying the authentication request), the
received CDDC browser data, and the data to display on the Customer Mobile
Application.

4. The OneSpan Trusted Identity platform evaluates the risk related to the Web
browser used for the transaction request (based on multiple parameters

21

https://community.onespan.com/products/onespan-cloud-authentication/sandbox#/Transactions/transactionValidationUsingPOST
https://community.onespan.com/products/onespan-cloud-authentication/sandbox#/Transactions/transactionValidationUsingPOST
https://community.onespan.com/products/onespan-cloud-authentication/sandbox#/Transactions/transactionValidationUsingPOST

provided in the previous step and on existing parameters related to the user, e.g.
amount too high) and, in case of risk detection, initiates a step-up transaction
request on the Customer Mobile Application with a given authentication method
(see 3.2.7 Authentication methods).

Depending on the configuration defined in the OneSpan Trusted Identity plat-
form, multiple scenarios are possible:

e The transaction request can be transmitted via a push notification message
initiated by the OneSpan Trusted Identity platform and sent by the Push
Notification Service to the Customer Mobile Application. In this case, a push
notification message is sent to all mobile devices of the user where the Cus-
tomer Mobile Application is installed and activated.

¢ The transaction request can be transmitted by the Customer Application
Server via a different channel (e.g. display a Cronto image containing the
orchestration commmand related to the transaction request and scan it with
the Customer Mobile Application).

¢ The transaction request can be blocking or non-blocking.

The following steps describe a blocking scenario with the transaction request
transmitted via push notification.

. The Push Notification Service sends a push notification message containing the
orchestration commmand related to the transaction request to the Customer
Mobile Application.

. The Customer Mobile Application obtains the orchestration command contained
in the push notification message and calls the execute method of the Orches-
tration SDK to perform the remote authentication.

. The Orchestration SDK builds an orchestration command and transmits it to the
Customer Mobile Application using the onRemoteTransactionStepComplete method.

. The Customer Mobile Application transmits the orchestration command to the
Customer Application Server.

. The Customer Application Server calls the orchestration-commands Web service of

the OneSpan Trusted Identity platform by providing the orchestration command.

A new orchestration command is returned as a result.

22

10. The Customer Application Server transmits the orchestration command to the
Customer Mobile Application as a response to the previous request.

1. The Customer Mobile Application calls the execute method of the Orchestration
SDK to continue the remote transaction process (only if the transaction request is
still pending).

12. The Orchestration SDK calls the onRemoteTransactionDisplayData method to trans-
mit the data to display to the Customer Mobile Application.

13. The Customer Mobile Application displays a screen to the user containing the
data to display and two buttons to approve or reject the transaction request.

14. The user must approve or reject the transaction request, according to the dis-
played data.

15. Based on the user’s decision in the previous step, the Customer Mobile Applic-
ation calls the onDataApproved or onDataRejected method of the Orchestration SDK.

16. In both cases, the Orchestration SDK prompts the user to authenticate by using
an authentication method defined by the OneSpan Trusted Identity platform,
based on the evaluated risk (see step 4).

17. The Orchestration SDK signs the transaction request, builds an orchestration
command, and transmits it to the Customer Mobile Application using the
onRemoteTransactionStepComplete method.

18. Repeat steps 8to Tl.

19. In case of validation by the OneSpan Trusted Identity platform, the Orchestration
SDK calls the onRemoteTransactionSuccess method to notify the Customer Mobile
Application.

20. The Customer Mobile Application notifies the user that the transaction request
has been validated.

21. The OneSpan Trusted Identity platform provides a response to the call to the
transactions/validate Web service from step 3, indicating the success of the trans-
action request.

22. The Customer Application Server transmits the success status to the Customer
Website. The user is informed that the transaction has been validated on the Cus-
tomer Website.

For more information about integrating this feature, see 5.5 Remote transaction.

23

3.2.5 Local authentication

With the local authentication feature of the OneSpan Orchestration SDK, the user can
authenticate to the Customer Website using a one-time password (OTP) generated
via the Customer Mobile Application. The OTP can be transmitted manually by the
user, or remotely by the Customer Mobile Application. An authentication method
must be defined to authenticate the user before the OTP is generated. See 3.2.7
Authentication methods for more information.

Figure 6 illustrates the local authentication workflow with a manual transmission of
the OTP.

. OneSpan Adaptive
Srenesiton 88 - - - - Authentication Service

< Login (User Identifier) @

startLocalAuthentication
@((User Identifier,
Authentication Method)

Authenticate user (PIN / Fingerprint / Face) >

©,

e OK/NOK

onlocalAuthenticationSuccess. .@

Display OTP- >®

Login N
(User Identifier, OTP)

Login
(User Identifier, OTP)

login (User Identifier, ow)—»:)
7

OK /NI

(O 'E——
(O E—

Figure 6: Local authentication workflow

» Local authentication workflow

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode AP|I documentation on LocalAuthenticationDelegate for this work-
flow.

1. The user initializes an authentication request via the Customer Mobile Applic-
ation (e.g. for login purposes), providing their user identifier.

2. The Customer Mobile Application calls the startLocalAuthentication method of the
Orchestration SDK to perform the local authentication with a given

24

authentication method (see 3.2.7 Authentication methods for more inform-
ation).

3. The Orchestration SDK prompts the user to authenticate by using an authen-
tication method defined by the Customer Mobile Application.

4. In case of successful user authentication, the Orchestration SDK generates a one-
time password (OTP), and transmits it to the Customer Mobile Application using
the onLocalAuthenticationSuccess method.

5. The Customer Mobile Application displays the OTP to the user.

6. The user initializes an authentication request via the Customer Website (e.g. for
login purposes), by providing their user identifier and the generated OTP. This
request is transmitted to the Customer Application Server.

7. The Customer Application Server calls the login method of the OneSpan Trusted
Identity platform to verify the OTP.

8. The Customer Application Server provides a response to the Customer Website
by indicating the success of the authentication request.

9. The user is logged in to the Customer Website.

For more information about integrating this feature, see 5.6 Local authentication.

3.2.6 Local transaction

With the local transaction feature of the OneSpan Orchestration SDK, the user can do
a transaction to the Customer Website using a signature generated via the Customer
Mobile Application. The signature can be transmitted manually by the user or
remotely by the Customer Mobile Application. An authentication method must be
defined to authenticate the user before the signature is generated. See 3.2.7
Authentication methods for more information.

Figure 7 illustrates the local transaction workflow with a manual transmission of the
signature.

25

Orchestration OneSpan Adaptlve
Authentication
SDK g
Service

Transaction Request
<« (User Identifier,
Transaction Data)

startLocalTransaction
(User Identifier,

@ Transaction Data,
Authentication Method)

Authenticate user (PIN / Fingerprint / Face)4>Q
3]

OK / NOK-

onlocalTransactionSuccess
— . —>
(Signature)

Display ﬁgnature—»@

Transaction Request
(User Identifier,
Transaction Data, »
Signature) Transaction Request
(User Identifier,

Transaction Data,
Signature) ——

transactions/validate
(User Identifier,
Transaction Data,

—
Signature) 3

<« OK/NOK

%Success

®<—Transaction validated

Figure 7: Local transaction workflow

» Local transaction workflow

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode AP|I documentation on LocalTransactionDelegate for this workflow.

1. The user initializes a transaction request via the Customer Mobile Application
(e.g. for login purposes), providing their user identifier and the transaction data.

2. The Customer Mobile Application calls the startLocalTransaction method of the
Orchestration SDK to perform the local authentication with a given authen-
tication method (see 3.2.7 Authentication methods for more information).

3. The Orchestration SDK prompts the user to authenticate, using an authen-
tication method defined by the Customer Mobile Application.

4. In case of successful user authentication, the Orchestration SDK generates a sig-
nature and transmits it to the Customer Mobile Application using the

onLocalTransactionSuccess method.
5. The Customer Mobile Application displays the signature to the user.

6. The user initializes a transaction request via the Customer Website (e.g. for
money transfer purposes) by providing their user identifier, the transaction data,

26

and the generated signature. This request is transmitted to the Customer Applic-
ation Server.

7. The Customer Application Server calls the transactions/validate method of the
OneSpan Trusted Identity platform to verify the signature of the transaction
request.

8. The Customer Application Server provides a response to the Customer Website,
indicating the success of the transaction request.

9. The user is informed that the transaction has been validated on the Customer
Website.

For more information about integrating this feature, see 5.7 Local transaction.

3.2.7 Authentication methods

User authentication requested by the Orchestration SDK can take place using one of
the following methods:

¢ No password
¢ Password

¢ Biometric recognition

In case of remote authentication or remote transaction the authentication method is
dynamically defined by the OneSpan Trusted Identity platform after risk evaluation. In
case of local authentication or transaction, the Customer Mobile Application must
define the authentication method.

If the requested authentication method is not supported by the mobile device (e.g.
biometric recognition requested but no biometric sensor on the device), the Orches-
tration SDK will fall back to authentication with password.

No password

If the authentication method is No password, no user action is required for the com-
pletion of the process.

Password

If the authentication method is password, the Orchestration SDK displays a virtual
keypad or call the password user authentication flow, and the user needs to enter

27

their password.

00 @ U 59%

Enter your PIN

1
4
14

3
9

Figure 8: Authentication using a virtual keypad

For more information about this authentication method, refer to the Digipass

SDK Integration Guide.

NOTE: The texts displayed in the dialog and other graphical elements (i.e. text, col-
ors, icons) are customizable. For more information, see 4 Integrate the Orchestration

SDK.

Biometric

If the authentication method is biometric recognition, the Orchestration SDK displays
a dialog prompting the biometric scanner of the device. The Fallback button provided

by the Biometric Sensor SDK is not available in the biometric dialog.

28

Please, use your fingerprint

scanner to authenticate,

Cancel

Figure 9: Authentication using biometric recognition

For more information about this authentication method, refer to the OneSpan Biometric

Sensor SDK Integration Guide.

NOTE: The texts displayed in the dialog are customizable. All other graphical ele-
ments (i.e. text, colors, icons) cannot be customized. For more information, see 4

Integrate the Orchestration SDK.

External user authentication

Introduction

It is possible to override the user authentication. Instead of displaying the integrated
Orchestration user authentication, the Orchestration SDK will call a specific callback
to inform the Customer Mobile Application that such an authentication is required. In
this call, the type of authentication will be indicated. For now only password is avail-
able. Below you will find some best practices for this kind of authentication.

29

NOTE: If an activation was done using an external password, it will have to be
provided to change the password.

NOTE: The input for the PASSWORD authentication is not stored by the Orches-
tration SDK. This should never be store in the Customer Mobile Application.

Usage

Orchestration

———setUserAuthenticationCallback()———»

User authentication flow

————onUserAuthenticationRequired()—————»

3]

q! ed the required authentication type

T /S

Provide proof of identity
i

DO NOT STORE THE USER INPUT
+———onUserAuthenticationInputSuccess()———

The following two actions are dependent on the authentication type

'
H
E (Optional) Validate user input
|

-------- O

i

| (Optional) Derivate the secret
‘_______1 using user input

A

Figure 10: External user authentication workflow

3 Using the Orchestration SDK

Orchestration SDK Integration Guide 30

» User authentication flow

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode API documentation on UserAuthenticationDelegate for this workflow.

1. The Customer Mobile Application registers a UserAuthenticationCallback and the
different user authentication methods that will be overridden.

2. The Orchestration SDK informs the Customer Mobile Application, that a user
authentication is required. The following information will be provided:

¢ Type of user authentication.
¢ A Boolean that indicates if this is for enrollment purposes.
¢ A callback to send back the user input.

3. The Customer Mobile Application presents the requested authentication to the
user.

4. The user identifies themselves via the Customer Mobile Application.

5. The Customer Mobile Application sends the user input back to the Orchestration
SDK.

6. (OPTIONAL) The Orchestration SDK validates the provided input. For example the
password should respect the weak password rules of Digipass SDK.

7. (OPTIONAL) The user input can be used to derive the secret stored in the Digi-
pass SDK., This way, it can only be used when the user provides the same input.

Password input best practices

Mobile apps often handle sensitive information in the form of passwords. The fol-
lowing recommendations outline the security precautions that should be taken when
entering passwords into mobile apps.

Build an in-house keypad (do not use one of the inbuilt keyboards of
the device)

Using a custom keypad that is part of the app, prevents attacks using malicious
keyboards or generic keyboards sniffers. Third-party keyboards may hide mali-

31

cious functionalities and can be used to steal passwords. For this reason, they
should not be used for password input.

When using an in-house keypad, consider randomizing the position of
the keys in the keypad

This security measure will make event grabbing attacks less likely.

Do not allow copying of the password from its input field

If the password is entered in an input field, make sure it cannot be copied to the
clipboard.

Use password text fields that hide the value of the password

If the password is entered in an input field, ensure that the password is masked
(e.g., screen displays this format “***"), This security measure prevents attackers
from reading the password over the shoulder or from capturing the password via
screenshot.

Avoid the use of WebViews for password input

WebViews present additional security risks and should not be used for the input
of sensitive information.

Clear passwords in memory as soon as they are no longer needed

Passwords should reside in memory as short as possible.

This means that the object used for storing the password in memory should be
clearable (e.g., in Java passwords should be stored in Byte arrays instead of
Strings). Once the password is no longer required, the object should be actively
cleared (e.g., by zeroing the bytes in the array).

Validate the input before storing it in the password object in memory

In case one of the inbuilt device keyboards is used (and not an in-house keypad),
the input from the keyboards should be sanitized before accepting it. Note that
this is not the same as checking against a password policy. This is just to ensure
that no invalid characters are entered in the input field.

Validate the password output before sending it to a downstream SDK
or API call

Although it is the responsibility of the downstream SDK or API to sanitize its
inputs, it is a good practice to also sanitize the output before using it in and SDK

32

or API call. For example, the password could be validated against a list of accept-
able characters and a maximum length.

3.2.8 Change password

The Orchestration SDK provides facilities for the user to change their password. The
password was defined during the activation process.

The Orchestration SDK displays a virtual keypad or calls the password user authen-
tication flow, where the user can enter the old password, and then define and confirm
the new password. If an external user authentication by password has been con-
figured the “User Authentication Flow"” will be called.

A network request is required to check whether the entered old password is valid: an
OTP is generated with the old password and validated on the Customer Application
Server.

Figure Tl illustrates the change password workflow.

Orchestration OneSpan Adaptive
SDK Authentication
Client Service
®

hange PI
®
t user with 3
OK/NOI
onchangePasswordstepComplete
(Command) >
rrrrrr it (C 5
orchestration-commands
>
(Command) @
« Commany d
7
execute
g (Command)
w
! ©
0K/ NoI
|
Confirm new PIN >
< 0K/ NOK
onchangePasswort dSuccess
(Command) >
®

Figure 11: Change password workflow

Change password workflow

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode API documentation on ChangePasswordDelegate for this workflow.

33

10.

.

12.

The user initiates the change password process using the Customer Mobile
Application.

The Customer Mobile Application calls the startChangePassword method of the
Orchestration SDK to change the user’s password.

The Orchestration SDK displays the virtual keypad or calls the password user
authentication flow, where the user can enter their old password.

The Orchestration SDK generates a one-time password (OTP) with the old pass-
word, builds an orchestration command, and transmits it to the Customer Mobile
Application using the onChangePasswordStepComplete method.

The Customer Mobile Application transmits the orchestration command to the
Customer Application Server.

The Customer Application Server calls the orchestration-commands Web service of
the OneSpan Trusted Identity platform by providing the orchestration command.
A new orchestration command is returned as a result.

The Customer Application Server transmits the orchestration command to the
Customer Mobile Application as a response to the previous request.

The Customer Mobile Application calls the execute method of the Orchestration
SDK to continue the change password process (only if the OTP validation suc-
ceeded).

In case of successful user authentication, the Orchestration SDK displays the vir-
tual keypad or calls the password user authentication flow, where the user can
enter their new password.

If the password is not weak, the Orchestration SDK displays the virtual keypad or
calls the password user authentication flow, where the user can confirm their
new password.

The Orchestration SDK calls the onChangePasswordSuccess method to notify the Cus-
tomer Mobile Application of the changed password.

The Customer Mobile Application notifies the user that the password has been
successfully changed.

For more information about integrating this feature, see 5.9 Change password.

34

3.2.9 Device data collection

The orchestration commands sent by the Orchestration SDK contain device data col-
lected periodically.

This data is used for risk evaluation in the OneSpan Trusted ldentity platform and pro-
tected via the Secure Channel feature to ensure confidentiality, integrity, and non-
repudiation. For more information about the collected data, refer to the Client Device
Data Collector SDKIntegration Guide.

Collection of device data is started automatically when the Orchestration SDK is ini-
tialized, with the following default collection parameters:

¢ Refresh interval: 60 seconds

e Collection enabled for geolocation, Bluetooth, and Wi-Fi

Special permissions may be required (see 4.1 Integrating OneSpan Orchestration
SDK with Android).

Data that cannot be collected automatically must be populated during the integ-
ration. For more information about integrating this feature, see 5.10 Device data col-
lection.

3.2.10 Multi-user management

The Orchestration SDK provides facilities to activate multiple users in the Customer
Mobile Application. To achieve this, each activation process must use its own user iden-
tifier.

NOTE: Each user has their own password; the password is not shared by all users.

Notification registration must be performed for each activated user.
The Orchestration SDK provides methods to check whether a user is activated, to
obtain user information, and to delete a user.

For more information about integrating this feature, see 5.11 Multi-user man-
agement.

Integrate the Orchestration SDK 4

This section provides information on exposed APIs and instructions to integrate
the Orchestration SDK with the supported platforms.

4.1 Integrating OneSpan Orchestration SDK with Android 37

4.2 Integrating OneSpan Orchestration SDK with iOS 40

36

4.1 Integrating OneSpan Orchestration SDK with
Android

» To use OneSpan Orchestration SDK in your Android project

1. Configure your Maven repository using dependencies from the Bin/maven dir-
ectory.

2. Add the following dependencies to the dependencies configuration in the
build.gradle file :

dependencies {

implementation 'androidx.biometric:biometric:1.1.0"'

implementation 'com.google.firebase:firebase-core:21.1.1"'
implementation 'com.google.firebase:firebase-messaging:23.1.2"'
implementation 'androidx.appcompat:appcompat:1.6.1"

implementation 'androidx.legacy:legacy-support-v4:1.0.0'
implementation 'androidx.lifecycle:lifecycle-runtime:2.6.0'
implementation 'com.google.android.material:material:1.8.0'
implementation 'com.google.android.gms:play-services-location:21.0.1"'
implementation 'com.esotericsoftware:kryo:5.3.0'

implementation 'org.bouncycastle:bcprov-jdki5on:1.70

implementation "org.jetbrains.kotlin:kotlin-stdlib-jdk7:1.7.0"

3. Set the correct permissions for client device data collection in the
AndroidManifest.xml file:

e Geolocation/Bluetooth/Wi-Fi: ACCESS_COARSE_LOCATION or ACCESS._
FINE_LOCATION

e Wi-Fi: ACCESS_WIFI_STATE, ACCESS_NETWORK_STATE, and CHANGE_WIFI_
STATE

e Bluetooth: BLUETOOTH and BLUETOOTH_ADMIN for Android lower than 12

e Bluetooth: BLUETOOTH_CONNECT and BLUETOOTH_SCAN for Android 12
and later

¢ Sampling rate: HIGH_SAMPLING_RATE_SENSORS for Android 12 and later

The Orchestration SDK provides facilities for biometric recognition on Android 6.0
devices (and later) with a biometric scanner.

NOTE: If you use the Mobile Application Shielding obfuscation feature, you must
add the following rule to the Mobile Application Shielding obfuscation configuration
file:

untouchable com.esotericsoftware.kryo.*;

TIP: For more specific integration details, refer to the code sample that is provided
with the Orchestration SDK product package.

NOTE: The Orchestration SDK requires the following permissions:

e USE_BIOMETRIC for biometric recognition on Android 6.0 devices (and later)
with the available biometric authentication method.

e VIBRATE for password input.

These permissions are listed in the AndroidManifest.xml file contained in
OrchestrationSDK.aar. This file is included in the maven repository, therefore the per-
missions do not need to be duplicated in the AndroidManifest.xml file of the Customer
Mobile Application.

NOTE: As of Android 13, to receive notifications in the Orchestration SDK you have to
manually handle the new runtime permission POST_NOTIFICATIONS. For more inform-
ation, refer to developer.android.com.

NOTE: The Orchestration SDK library size has increased due to 64-bit support. To
reduce the binary size, it is possible to generate one app per architecture. For more

38

https://developer.android.com/about/versions/13/changes/notification-permission

details refer to Build Multiple APKs. The orchestration sample build.gradle contains a
commented-out section to generate split APKs.

CAUTION: At this time, it is not possible to use the Android Allow Backup feature.
There is a known issue that excludes storage files from the backup which are critical
for the Orchestration SDK to work properly. We strongly recommend disabling the
Allow Backup option.

You are now ready to use the Orchestration SDK.

39

https://developer.android.com/studio/build/configure-apk-splits

4.2 Integrating OneSpan Orchestration SDK with

i0S

» Using OneSpan Orchestration SDK in your iOS project

1.

2.

Link MSSOrchestration.xcframework to your Xcode project.

Link MSSDeviceBinding.xcframework to your Xcode project.

Link MSSNotificationClient.xcframework to your Xcode project.

Link MSSOrchestrationResources.bundle to your Xcode project as standard resource

file.

Add the following keys and their description to your plist:

NSCameraUsageDescription
NSFaceIDUsageDescription
NSLocationWhenInUseUsageDescription
NSBluetoothPeripheralUsageDescription
NSBluetoothAlwaysUsageDescription

NSLocalNetworkUsageDescription (if applicable)

CAUTION: As of release 5.6.2, it is mandatory to use the AppPrivate access group for
activated users when creating an orchestration. The access group setup is similar to
the one introduced in the Device Binding SDK. For more information, refer to the
technical documentation included in the Orchestration SDK package. For a detailed
tutorial on how to configure the project and use the proper access group, see the
MSSDeviceBinding.doccarchive file from the i0S/Documentation folder of the Device Bind-
ing SDK package.

NOTE: The NSLocalNetworkUsageDescription description has to be set only if your applic-
ation (or specific test target) actually accesses the server in a local network. When this

40

applies, set waitsForConnectivity to true. With this URLSessionConfiguration used in the
communication waits for user's interaction, displaying a permission pop-up.

TIP: For more specific integration details, refer to the code sample that is provided
with the Orchestration SDK product package.

You are now ready to use the Orchestration SDK.

41

Exposed APIs in the Orchestration SDK 5

This section provides information on exposed APIs and instructions to integrate the
Orchestration SDK with the supported platforms.

5.1 Core 43
5.2 Activation 46
5.3 Notification registration 47
5.4 Remote authentication 48
5.5 Remote transaction 49
5.6 Local authentication 50
5.7 Local transaction 52
5.8 Authentication method 54
5.9 Change password 60
5.10 Device data collection 61
5.11 Multi-user management 63

42

5.1 Core

NOTE: The Orchestration SDK contains a native interface for Swift. This interface
provides native Swift methods and objects. It offers the same logical flow as the
Objective-C interface but provides better signatures and more data on orchestrator
instances. The Swift sample app delivered with the Orchestration SDK package uses
the relevant Swift APls, and the README.md file delivered with the sample app contains
examples and code snippets.

5.1.1 Entry point

The Orchestrator class is the entry point of the Orchestration SDK. It manages the
flows related to the features of the SDK by providing methods to start these flows (e.g.
startActivation) and to interpret the orchestration commands received from the
OneSpan Trusted Identity platform (via the execute method).

An Orchestrator object must be created by using the dedicated Orchestrator.Builder
class.

The following parameters must be defined when building an Orchestrator object:

¢ Hardcoded salts, which will be used for weak diversification with certain security
features (e.g. device binding, secure storage). These salts will be derived by the
Orchestration SDK to complicate reverse-engineering attacks.

¢ Default domain, as configured in the OneSpan Trusted Identity platform. If the
Customer Mobile Application must manage multiple domains, the default
domain can be dynamically overwritten for each action (e.g. startActivation).

¢ Android only: A Context object is required for using the native features of the
mobile device (e.g. data storage).

e Android only: An ActivityProvider object is required to properly display and
handle the Biometric and PinPad dialog.

¢ A CDDCParams object, which will define the parameters for device data collection.
These parameters are optional; default parameters are hardcoded in the Orches-
tration SDK. For more information, see 5.10 Device data collection.

¢ An OrchestrationErrorCallback object, which will be used to throw errors from the
Orchestration SDK to the Customer Mobile Application. For more information,
see 5.1.2 Error and warning management.

e An OrchestrationWarningCallback object, which will be used to throw warnings
from the Orchestration SDK to the Customer Mobile Application. For more
information, see 5.1.2 Error and warning management.

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode AP|I documentation on CDDCParameters, OrchestrationErrorDelegate
and OrchestrationWarningDelegate.

5.1.2 Error and warning management

Error

Errors are thrown via the onOrchestrationError method of the
OrchestrationErrorCallback object. The OrchestrationError object provides error codes
and the cause of the error. The possible errors are listed in the OrchestrationErrorCodes
class.

Warning

Warnings are thrown via the onOrchestrationWarning method of the
OrchestrationWarningCallback object. The OrchestrationWarning object provides warning
codes and the cause of the warning, as well as a list of all possible warning codes. The
possible errors are listed in the OrchestrationWarningCodes class.

NOTE: New APIs are created for Swift users of iOS SDK. Please consult Xcode API
documentation provided on OrchestrationErrorDelegate and
OrchestrationWarningDelegate. All possible errors are listed under OrchestrationError
enum and all possible warnings are listed under OrchestrationWarning enum.

5.1.3 Callback mechanism

The Orchestration SDK uses asynchronous mechanisms to execute the flows related
to the features of the SDK.

Callback methods are used to notify the Customer Mobile Application when an action
related to a specific flow is finished (e.g. the activation has succeeded) or requires
action of the Customer Mobile Application (e.g. perform a network request with the
given orchestration command).

NOTE: The callback methods are called from the Ul thread on Android, and from the
main thread on iOS.

The Customer Mobile Application must provide an implementation of the dedicated
callback methods to receive these notifications.
Callback registration is required for the following features:

e Activation

¢ Remote authentication

¢ Remote transaction

e Local authentication

e Local transaction

e Change password

¢ Notification registration

5.1.4 Application life cycle

On Android, to properly display Ul components such as the virtual keypad, the
Orchestrator object is life-cycle-aware.

For the Orchestrator object to work properly, an instance of the ActivityProvidor is
required. This returns weak references to the current Activity object.

NOTE: This requirement does not apply to applications on iOS.

45

5.2 Activation

NOTE: New APIs are created for Swift users of the iOS SDK. For more details, refer to
the Xcode API documentation on OnlineActivationParameters and
OnlineActivationDelegate.

The activation process must be initiated by calling the startActivation method of the
Orchestrator object.

An OnlineActivationParams object must be provided as an input parameter of the
startActivation method, and this OnlineActivationParams object must be initiated with
the following parameters:

User identifier. A string which uniquely identifies the user on the OneSpan Trus-
ted Identity platform.

Activation password. Secret data shared between the Customer Application
Server and the user.

(OPTIONAL) Cryptographic Application Index. The index of the cryptographic
application that must be used to sign the instance activation message. The
default value is 1.

An object implementing the OnlineActivationCallback interface.

The OnlineActivationCallback interface is used by the Orchestration SDK to interact
with the Customer Mobile Application during the activation process. It exposes the fol-
lowing methods:

onActivationStepComplete. Called upon activation step success, the provided com-
mand must be sent to the server.

onActivationSuccess. Called upon activation process success.

onActivationInputError. Called upon activation process error due to incorrect user
input. The possible errors are listed in the OrchestrationErrorCodes class.

onActivationAborted. Called when the activation process is canceled.

For more information about this feature, see3.2.1 Activation

46

5.3 Notification registration

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode APl documentation on NotificationRegistrationParameters and
NotificationRegistrationDelegate.

The Customer Mobile Application can initialize a notification registration process by
calling the startNotificationRegistration method of the Orchestrator object.

A NotificationRegistrationParams object must be provided as an input parameter of the
startNotificationRegistration method; this NotificationRegistrationParams object must
be initiated with the following parameters:

e User identifier. A string which uniquely identifies the user on the OneSpan Trus-
ted Identity platform.

¢ Notification identifier. Uniquely identifies an app on a given device in the context
of push-notification-based authentication. Defined by the notification service (i.e.
Apple or Google).

¢ An object implementing the NotificationRegistrationCallback interface.

The NotificationRegistrationCallback interface is used by the Orchestration SDK to
interact with the Customer Mobile Application during the notification registration pro-
cess. It exposes the following methods:

e onNotificationRegistrationStepComplete: Called when a step of the notification regis-
tration process is complete. The provided orchestration command must be sent
to the server.

e onNotificationRegistrationSuccess: Called upon successful notification registration.

For more information about this feature, see 3.2.2 Notification registration.

47

5.4 Remote authentication

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode AP| documentation on RemoteAuthenticationDelegate.

The Customer Mobile Application must call the setRemoteAuthenticationCallback
method and provide an implementation of the RemoteAuthenticationCallback interface
to process a remote authentication flow.

The RemoteAuthenticationCallback interface is used by the Orchestration SDK to interact
with the Customer Mobile Application during the remote authentication process. It
exposes the following methods:

¢ onRemoteAuthenticationDisplayData. Called when the Orchestration SDK needs the
RemoteAuthenticationCallback interface implementation to display data for
approval by the user.

¢ The Customer Mobile Application must call the onDataApproved method of the
DisplayDataCaller object if the user approves the authentication request.

¢ The Customer Mobile Application must call the onDataRejected method of the
DisplayDataCaller object if the user rejects the authentication request.

e onRemoteAuthenticationStepComplete. Called when a step of the remote authen-
tication process is complete. The provided orchestration command must be sent
to the server.

¢ onRemoteAuthenticationSuccess. Called upon remote authentication success. It can
also be called to notify the Customer Mobile Application that the rejected request
has been taken into account by the Customer Application Server.

e onRemoteAuthenticationSessionOutdated. Called when the remote authentication ses-
sion is outdated (expired, already approved, or already rejected).

e onRemoteAuthenticationAborted. Called when remote authentication is canceled.

¢ onRemoteAuthenticationPasswordError. Called upon remote authentication process
error due to incorrect user input. The possible errors are listed in the
OrchestrationErrorCodes class.

For more information about this feature, see 3.2.3 Remote authentication.

48

5.5 Remote transaction

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode AP| documentation on RemoteTransactionDelegate.

The Customer Mobile Application must call the setRemoteTransactionCallback method
and provide an implementation of the RemoteTransactionCallback interface to process a
remote transaction flow.

The RemoteTransactionCallback interface is used by the Orchestration SDK to interact
with the Customer Mobile Application during the remote transaction process. It
exposes the following methods:

¢ onRemoteTransactionDisplayData. Called when the Orchestration SDK needs the
RemoteTransactionCallback interface implementation to display data for approval
by the user.

¢ The Customer Mobile Application must call the onDataApproved method of the
DisplayDataCaller object if the user approves the transaction request.

¢ The Customer Mobile Application must call the onDataRejected method of the
DisplayDataCaller object if the user rejects the transaction request.

e onRemoteTransactionStepComplete. Called when a step of the remote transaction pro-
cess is complete. The provided orchestration commmand must be sent to the
server.

e onRemoteTransactionSuccess. Called upon remote transaction success. It can also be
called to notify the Customer Mobile Application that the rejected request has
been taken into account by the Customer Application Server.

e onRemoteTransactionSessionOutdated. Called when the remote transaction session is
outdated (expired, already approved, or already rejected).

e onRemoteTransactionAborted. Called when remote transaction is canceled.

e onRemoteTransactionPasswordError. Called upon remote transaction process error
due to incorrect user input. The possible errors are listed in the
OrchestrationErrorCodes class.

For more information about this feature, see 3.2.4 Remote transaction.

49

5.6 Local authentication

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode API documentation on LocalAuthenticationParameters and

LocalAuthenticationDelegate.

The Customer Mobile Application can initialize a local authentication process by call-
ing the startLocalAuthentication method of the Orchestrator object.

A LocalAuthenticationParams object must be provided as an input parameter of the
startLocalAuthentication method; this LocalAuthenticationParams object must be ini-
tiated with the following parameters:

e User identifier. A string which uniquely identifies the user on the OneSpan Trus-
ted Identity platform.

e Cryptographic Application Index. The index of the cryptographic application
which must be used to generate the OTP.

¢ (OPTIONAL) Challenge. A string which can be used to diversify the OTP gen-
eration. If the crypto-app index is related to a Challenge/Response application, a
challenge parameter must be provided.

e Protection Type. The authentication method which must be used to authenticate
the user before the OTP is generated (see 3.2.7 Authentication methods for
more information).

¢ An object implementing the LocalAuthenticationCallback interface.

The LocalAuthenticationCallback interface is used by the Orchestration SDK to interact
with the Customer Mobile Application during the local authentication process. It
exposes the following methods:

e onlLocalAuthenticationSuccess: Called upon local authentication success. It returns
the generated OTP and, depending on the Digipass configuration, a host code
(used to authenticate the authentication server on which the OTP has been sub-
mitted).

e onLocalAuthenticationAborted: Called when local authentication is canceled.

¢ onLocalAuthenticationPasswordError: Called upon a local authentication process
error due to incorrect user input. The possible errors are listed in the
OrchestrationErrorCodes class.

For more information about this feature, see 3.2.5 Local authentication.

51

5.7 Local transaction

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode APl documentation on LocalTransactionParameters and
LocalTransactionDelegate.

The Customer Mobile Application can initialize a local transaction process by calling
the startLocalTransaction method of the Orchestrator object.

A LocalTransactionParams object must be provided as an input parameter of the
startLocalTransaction method; this LocalTransactionParams object must be initiated with
the following parameters:

User identifier. A string which uniquely identifies the user on the OneSpan Trus-
ted Identity platform.

e Cryptographic Application Index. The index of the cryptographic application
which must be used to generate the signature.

e Data Fields. The transaction data to sign. A list of max. 8 data fields; the length of
the data fields is limited to 16 characters.

e Protection Type. The authentication method which must be used to authenticate
the user before signing the transaction (see 3.2.7 Authentication methods for
more information).

The LocalTransactionCallback interface is used by the Orchestration SDK to interact
with the Customer Mobile Application during the local transaction process. It exposes
the following methods:

e onLocalTransactionSuccess. Called upon local transaction success. It returns the
generated signature and, depending on the Digipass configuration, a host code
(used to authenticate the authentication server on which the signature has been
submitted).

e onLocalTransactionAborted. Called when local transaction is cancelled.

52

¢ onLocalTransactionPasswordError. Called upon a local transaction process error due
to incorrect user input. The possible errors are listed in the OrchestrationErrorCodes
class.

For more information about this feature, see 3.2.6 Local transaction.

53

5.8 Authentication method

5.8.1 Customization of integrated authentication

The texts related to the authentication methods can be customized using the keys lis-
ted in Table 1in the configuration files of the Customer Mobile Application (i.e.
string.xml for Android and Localizable.strings for iOS).

Table 1: Virtual keypad - Text customization keys

Key Default value Description
orch_pinpad_text_ Choose a password Registration text
registration

orch_pinpad_text_ Confirm your password Confirmation text dur-
registration_confirm ing registration
orch_pinpad_text_ Enter your password Text for authentication
authentication

orch_pinpad_text_ Choose a new password Text for updating the
update password
orch_pinpad_text_ Confirm new password Text for confirming the
update_confirmation updated password
orch_pinpad_error_ The password is too simple. Choose a more Weak password error
weak complex password.

orch_pinpad_error_ The password confirmation has failed. Make Password confirmation
confirmation sure you entered the same password twice. error

Table 2: Biometric recognition

Key Default value

orch_biometric_title Biometric Authentication
orch_biometric_description Please, use your Biometric scanner to authenticate
orch_biometric_failed Authentication failed

orch_biometric_btn_cancel Cancel

The color can be customized using the keys listed in Table 3 in the configuration files
of the Customer Mobile Application (i.e. color.xml for Android and Localizable.strings
for iOS).

Table 3: Virtual keypad - Color customization keys

Key Default value Description
orch_pinpad_background_color HFFEFFFf Background color
orch_pinpad_arrow_color H#ffffc107 Delete arrow color
orch_pinpad_input_color #ffffc107 Secure input color
orch_pinpad_text_color #ffOOO000 Title color
orch_pinpad_text_error_color H#fFFFOO00 Text error color
orch_pinpad_digit_color #ffOOO000 Color of the Virtual keypad digits

The font size can be customized using the keys listed in Table 4 in the configuration
files of the Customer Mobile Application (i.e. dimens.xml for Android and
Localizable.strings for iOS).

Table 4: Virtual keypad - Font size customization keys

Android Default iOS Default

Description

value value
orch_pinpad_input_ N/A 15 Secure input inactive font size,
empty_size only on iOS
orch_pinpad_input_ N/A 20 Secure input active font size,
full_size only on iOS
orch_pinpad_title_ 20sp 25 Title font size
text_size
orch_pinpad_text_ 18sp 16 Text error font size
error_size
orch_pinpad_digit_ 40sp 50 Font size of the Virtual keypad
text_size digits

The other graphical elements are defined differently on iOS and Android.
For iOS, you can define these by customizing the keys listed in Table 5 in the con-
figuration files of the Customer Mobile Application (i.e. Localizable.strings).

Table 5: Virtual keypad - Graphical elements customization keys for iOS
Key Default value Description

Background image (can be

orch_pinpad_background_image
empty)

Table 5: Virtual keypad - Graphical elements customization keys for iOS (continued)

Key Default value Description
orch_pinpad_background_mode fit Background image display mode.
Possible values:
e center
o fit
e stretch
orch_pinpad_arrow_image backspace Delete arrow image
orch_pinpad_input_font_name Secure input font (System if
empty)
orch_pinpad_input_empty_ o Secure input empty character
character
orch_pinpad_input_full_ u Secure input full character
character
orch_pinpad_text_font_name HelveticaNeue-Light Title font name
orch_pinpad_text_error_font_ HelveticaNeue Text error font name
name
orch_pinpad_digit_font_name HelveticaNeue- Font name of the Virtual keypad
UltraLight digits

For Android, the font can be customized by overriding the styles listed in Table 6 in
the configuration files of the Customer Mobile Application (i.e. styles.xml).

Table 6: Virtual keypad - Font customization for Android

Style Default font family name Description

PinpadTitleFont sans-serif-thin Title font style
PinpadErrorFont sans-serif-thin Text error font style
PinpadDigitFont sans-serif-thin Font style of the Virtual keypad digits

For Android, the secure input and the backspace arrow can be customized by over-
riding the drawable elements listed in Table 7 in the configuration files of the Cus-
tomer Mobile Application (i.e. in the drawable folder).

Table 7: Virtual keypad - Drawable element customization for Android

Drawable Description

orch_pinpad_backspace. xml Delete arrow drawable
Secure input full drawable

orch_pinpad_clue_activated.xml

56

Table 7: Virtual keypad - Drawable element customization for Android (continued)

Drawable Description

orch_pinpad_clue_ Secure input empty drawable

deactivated.xml

orch_pinpad_clue_ Secure input highlighted drawable

highlighted.xml

orch_pinpad_background_ Virtual keypad background drawable, can be overridden by an
image.xml image.

For Android, the Virtual keypad background can be customized in multiple ways:
¢ by changing its background color, as indicated in the Virtual keypad color table

¢ by overriding its background image, as indicated in the Virtual keypad drawable
table

¢ by overriding its layout in the configuration files of the Customer Mobile Applic-
ation (i.e. in the layout folder)

Table 8: Virtual keypad - Background customization for Android

Description

orch_pinpad_ Layout of the Virtual keypad background; the background image can
background_layout.xml be changed by using the android:src key.

Dark mode support for iOS
In the iOS sample, a file named PinPad.storyboard is available.
This file makes it possible to customize fonts, icon and colors. The Dark mode is man-

aged by declaring named colors in the assets catalog (Assets.xcassets) or by using sys-
tem colors.

The storyboard will take over the string customization as soon as it is added to the
integrating project.

57

() Em] @ OrchestrationsDkSample) &, iPhone 11 (14.5) Running OrchestrationSDKSample on iPhone 11

B QA © § > B B B ChangePas...ntroller.swift B Userauthen.. troller.swift B Registration...troller.swift B PinPad.storyboard

© B OrchestrationSDKSample [® OrchestrationsDksample) [l OrchestrationsDKSample) [} PinPad.storyboard) No Selection

> M Frameworks
v M OrchestrationSDKSample
SceneDelegate.swift
onstants.swift
Extensions.swift
> [View Controllers
> i UlElements
> i Utils
B PinPad.storyboard

Assets.xcassets

B Info.plist ENTER YOUR PIN CODE
y ENTER YOUR PIN CODE

B LaunchScreen.storyboard

B Localizable.strings

B Main.storyboard

B montserrat_regular.ttf

[@ OrchestrationSDKSample.e...
> M Products

[[J) View as: iPhone 11 («C nR)

NOTE: This storyboard contains a lot of links to outlets defined inside the Orches-
trationSDK. These links can't be restored if they are removed.

NOTE: The error you see in the storyboard is perfectly normal and doesn't make the
compilation fail.

¥ % |B Designables

% Failed to render and update auto layout status for PinPadViewController (S9Cs-x1-dwij):

dlopen(OrchestrationSDK.framework, 1): no suitable image found. Did find:
OrchestrationSDK framework: mach-o, but wrong architecture

5.8.2 External user authentication

We also provide an option to override the user authentication. For example instead of
displaying the integrated Virtual keypad, you can display your own password authen-
tication.

The Customer Mobile Application must call the setUserAuthenticationCallback method
and provide:

¢ an implementation of the UserAuthenticationCallback interface that will be called
when an overridden user authentication is required.

e alist of UserAuthenticationType containing all the user authentication you want to
override. For now only the UserAuthenticationType.PASSWORD can be overridden.

The UserAuthenticationCallback interface is used by the Orchestration SDK Client to
interact with the Customer Mobile Application during the process of overridding the
user authentication. It exposes the following methods:

e onUserAuthenticationRequired. Called when the Orchestration SDK Client needs the
UserAuthenticationCallback object to authenticate the end user.

¢ The Customer Mobile Application must call the
onUserAuthenticationInputSuccess method of the
UserAuthenticationInputCallback object if the user is authenticated. An input
from the user is expected, it may be used to derive the secret store in the
device.

¢ The Customer Mobile Application must call the
onUserAuthenticationInputAborted method of the
UserAuthenticationInputCallback object if the user aborts the user authen-
tification.

e onUserAuthenticationInputError. This is called when the Orchestration SDK Client
needs to inform the UserAuthenticationCallback method that there is an issue with
the input.

NOTE: For iOS, different names are used: UserAuthenticationCallback is called
UserAuthenticationDelegate, and UserAuthenticationInputCallback is called
UserAuthenticationInputDelegate.

NOTE: For more information about this feature, see 3.2.7 Authentication methods.

59

5.9 Change password

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode AP|I documentation on ChangePasswordParameters and

ChangePasswordDelegate.
The Customer Mobile Application can initialize a change password process by calling
the startChangePassword method of the Orchestrator object.

A ChangePasswordParams object must be provided as an input parameter of the
startChangePassword method.

The ChangePasswordParams object must be initiated with the following parameters:

e User identifier. A string which uniquely identifies the user on the OneSpan Trus-
ted Identity platform.

e Cryptographic Application Index: The index of the cryptographic application
which must be used to generate the OTP.

¢ An object implementing the ChangePasswordCallback interface.

The ChangePasswordCallback interface is used by the Orchestration SDK to interact with
the Customer Mobile Application during the change password process. It exposes the
following methods:

e onChangePasswordStepComplete. Called when a step of the change password process
is complete. The provided orchestration command must be sent to the server.

¢ onChangePasswordSuccess. Called upon successful change of the password.
¢ onChangePasswordAborted. Called when changing the password is cancelled.

¢ onChangePasswordInputError. Called upon an error in the change password process
due to incorrect user input. The possible errors are listed in the
OrchestrationErrorCodes class.

For more information about this feature, see 3.2.8 Change password.

60

5.10 Device data collection

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode AP|I documentation on CDDCDataFeeder and CDDCMessageParameters.

Device data collection can be optionally configured with a CDDCParams object. The fol-
lowing parameters can be configured:

e Refresh interval. The interval (in seconds) at which device data is refreshed.
Default: 60 seconds.

e Optional device data. The collection of certain device data types (i.e. geolocation,
Bluetooth, and Wi-Fi) requires specific permissions. By default, these data types
are not collected. For more information about required permissions on Android,
see 4.1 Integrating OneSpan Orchestration SDK with Android.

Most of the device data is collected automatically by the Orchestration SDK. Device
data which cannot be collected automatically can be provided by the Customer
Mobile Application, by using the CDDCDataFeeder object.

The CDDCDataFeeder object must be retrieved using the getCDDCDataFeeder method of the
Orchestrator object.

The Orchestrator object provides the getCDDCMessage method to transmit the collected
device data to the OneSpan Trusted Identity platform without using an orchestration
command.

A CDDCMessageParams object must be provided as an input parameter of the
getCDDCMessage method.

The CDDCMessageParams object must be initiated with the following parameters:

e User identifier. A string which uniquely identifies the user on the OneSpan Trus-
ted ldentity platform.

e Encrypted. Indicates whether the data must be encrypted.

61

¢ EFvent Name. A string representing an event related to the collected data. For
more information, refer to the Client Device Data Collector SDK Integration Guide
(part of the OneSpan Risk Analytics package).

e Application Data. A JSON string representing additional data to add in the CDDC
message. For more information, refer to the Client Device Data Collector SDK
Integration Guide (part of the OneSpan Risk Analytics package).

For more information about this feature, see 3.2.9 Device data collection.

62

5.11 Multi-user management

The UserManager object provides the following methods:
e getUsers. Lists the activated users.

e isUserActivated. Checks whether the provided user identifier corresponds to an
activated user.

¢ getUserInformation. Retrieves the information related to a specific user.

¢ deleteUser. Deactivates a specified user.

The UserManager object must be retrieved using the getUserManager method of the
Orchestrator object.

For more information about this feature, see 3.2.10 Multi-user management.

63

Index

A E

activation error management
exposed APIs 46 core 44
overview 11 exposed APIs
workflow 11 activation 46

Android authentication method 54
supported versions 8 change password 60

authentication method core 43
biometric recognition 28 device data collection 61
exposed APIs 54 local authentication 50
no password 27 local transaction 52
overview 27 multi-user management 63
Password 27 notification registration 47
with remote authentication 27 remote authentication 48

remote transaction 49
external user authentication

C workflow 30
callback mechanism

core 44 F
change password

exposed APIs 60 features

overview 33 activation M

workflow 33 authentication method 27
Customer Application Server 10 change password 33
Customer Mobile Application 10 device data collection 35
Customer Website 10 local authentication 24

multi-user management 35
notification registration 13

D Orchestration SDK, overview 10
remote authentication 16

Dark mode support 57)
remote transaction 20

device data collection
exposed APIs 61
overview 35

integration steps
Android 37
iOS 40

iOS
supported versions 8

J

Java, supported platforms 8

L

local authentication
exposed APIs 50
overview 24
workflow 24

local transaction
exposed APIs 52
workflow 26

M

multi-user management
exposed APIs 63
overview 35

N

notification registration
exposed APIs 47
overview 13
workflow 14

notification registration, caution
notice 14

@)

OneSpan Trusted Identity
platform 10
orchestration
example 8
Orchestration SDK
features 10
integrating, Android 37
integrating, iOS 40

P

Push Notification Service 10

R

remote authentication
exposed APIs 48
overview 8,16
workflow 17

remote transaction
exposed APIs 49
overview 20
workflow 21

S

supported platforms 8

U
User 10

W

warning management
core 44

65

workflows
activation T
change password 33
external user authentication 30
local authentication 24
local transaction 26
notification registration 14
remote authentication 17
remote transaction 21

66

	1 Introduction
	2 What's new in the Orchestration SDK
	2.1 Version 5.7.0
	2.2 Previous versions

	3 Using the Orchestration SDK
	3.1 Overview of the Orchestration SDK
	3.2 Features of the Orchestration SDK

	4 Integrate the Orchestration SDK
	4.1 Integrating OneSpan Orchestration SDK with Android
	4.2 Integrating OneSpan Orchestration SDK with iOS

	5 Exposed APIs in the Orchestration SDK
	5.1 Core
	5.2 Activation
	5.3 Notification registration
	5.4 Remote authentication
	5.5 Remote transaction
	5.6 Local authentication
	5.7 Local transaction
	5.8 Authentication method
	5.9 Change password
	5.10 Device data collection
	5.11 Multi-user management

	Index

