(J OneSpan

Notification SDK

Integration Guide

Version: 4.3]1

Copyright Notice

Copyright © 2013-2023 OneSpan North America, Inc. All rights reserved.

Trademarks

OneSpan™, DIGIPASS® and CRONTO® are registered or unregistered trademarks of OneSpan North America Inc.,
OneSpan NV and/or OneSpan International GmbH (collectively "OneSpan") in the U.S. and other countries.

OneSpan reserves all rights to the trademarks, service marks and logos of OneSpan and its subsidiaries.

All other trademarks or trade names are the property of their respective owners.

Intellectual Property

OneSpan Software, documents and related materials (“Materials”) contain proprietary and confidential information.
All title, rights and interest in OneSpan Software and Materials, updates and upgrades thereof, including software
rights, copyrights, patent rights, industrial design rights, trade secret rights, sui generis database rights, and all other
intellectual and industrial property rights, vest exclusively in OneSpan or its licensors. No OneSpan Software or Mater-
ials may be downloaded, copied, transferred, disclosed, reproduced, redistributed, or transmitted in any form or by
any means, electronic, mechanical or otherwise, for any commmercial or production purpose, except as otherwise
marked or when expressly permitted by OneSpan in writing.

Disclaimer

OneSpan accepts no liability for the accuracy, completeness, or timeliness of content, or for the reliability of links to
and content of external or third party websites.

OneSpan shall have no liability under any circumstances for any loss, damage, or expense incurred by you, your com-
pany, or any third party arising from the use or inability to use OneSpan Software or Materials, or any third party
material made available or downloadable. OneSpan will not be liable in relation to any loss/damage caused by modi-
fication of these Legal Notices or content.

Reservation

OneSpan reserves the right to modify these Notices and the content at any time. OneSpan likewise reserves the right
to withdraw or revoke consent or otherwise prohibit use of the OneSpan Software or Materials if such use does not
conform to the terms of any written agreement between OneSpan and you, or other applicable terms that OneSpan
publishes from time to time.

Contact us

Visit our website: https://www.onespan.com
Resource center: https://www.onespan.com/resource-center
Technical support and knowledge base: https://www.onespan.com/support

If there is no solution in the knowledge base, contact the company that supplied you with the OneSpan product.

Date: 2023-08-16

https://www.onespan.com/
https://www.onespan.com/resource-center
https://www.onespan.com/support

Contents

TINtrodUcCtion ... 1
2 What's new in the Notification SDK ... 2
2. VErSiON 4. 81,0 3
2.2 PrevioUS VEISIONS ..o 4
3 Usage of the Notification SDK ... 7
3.1 The Push Notification ProCess 8
3.2 Overview of the OneSpan Notification SDK 10
3.3 Migration from Version 4.18.x and Previous Versions ... 13
4 Notification SDK Client ..., 15
4.1 Integrate the Notification SDK Client ... 16
5 Notification SDK Server ... 23
5.1 Integrate the Notification SDK Server Sample 24
5.2 Migration from Version 4.24.x and Previous Versionson .NET ... 26

A Appendix: Platform-Specific Steps to Integrate the OneSpan
Notification SDK 27

Al Enable Push Notification in a Google project ... 28

A2 Enable Push Notification in an iOS project with token-based authentication
SO M 30

A3 Enable Push Notification in an iOS project with certificate-based authentication

SO I 3]
B APPEeNdixX: FAQ . 32
I O X 34

Figures

Figure 1: Registration process 10S . 8
Figure 2: Notification delivery process (I0S) 9
Figure 3: Registration process with OneSpan Notification SDK n
Figure 4: Notification delivery process with OneSpan Notification SDK 12
Figure 5: Integrate the Notification SDK Client (Android) 21
Figure 6: Integrate the Notification SDK Client (IOS) 22

Tables

Table 1. Properties in the onespan-notifications.properties file

Procedures

To use the Notification SDK Client in your Android project ... 16
To use the Notification SDK Client in your iOS project ... 21
To use the Notification SDK Server sample in your Java projectcccccooiii. 24
To use the Notification SDK Server in your .NET project ... 25
To get the ANdroid ProJeCt KeY ... 28
To get a google-services, json file ... 28

To migrate from Google Cloud Messaging (GCM) to Firebase Cloud Messaging with
the Notification SDK L. 29

To use the Push Notification feature in your iOS application with a token-based
authentication scheme

To use the Push Notification feature in your iOS application with a certificate-based
authentication SChemMe . 3]

Introduction

Welcome to the Notification SDK Integration Guide! This guide describes how to
integrate the Notification SDK into any application.

This guide provides information about:
¢ Functions of the Notification SDK, with parameter and method descriptions

¢ |Integration steps

What's new in the Notification SDK 2

This section provides an overview of changes introduced in the Notification SDK to
facilitate the integration of the SDK and provide information on backward com-

patibility.
2.1 Version 4.31.0 3
2.2 Previous versions 4

2.1 Version 4.31.0

2.1.1 .NET

Migrated from .NET Framework to .NET 6

The SDK has been migrated from .NET Framework to .NET 6 to leverage
upgraded features.

212 iOS

Bitcode support has been eliminated

Following the deprecation of Bitcode by Apple, we no longer support and have
removed all Bitcode from the SDK framework.

2.2 Previous versions

2.2.1 Version 4.30.1

.NET and Java

Create notifications based on server-set priority

It is now possible to create the notification based on a priority set by the server.
With this, it is for instance possible that while the device is in a sleep mode, a
high priority notification is received without a delay and wakes up the screen.

Android
Target APl increased to 33

To meet new requirements for apps published on the Google Play Store, the tar-
get version of the SDK has been increased to Android 13 with API level 33. This
change is needed to avoid APK rejection caused by security issues found in older
API versions.

New permission required

Android 13 (API level 33) and later supports a runtime permission for sending non-
exempt (including Foreground Services (FGS)) notifications from an app: POST_
NOTIFICATIONS. This change helps users focus on the notifications that are most
important to them.

For more information, refer to the Android developer documentation on how to
check if your app can send notifications.
i0S

Full control over notification body and title

The SDK now offers full control over the notification body and title. This can facil-
itate automation and potential integration of the Notification SDK Client with
third party solutions used in combination with the Notification SDK.

https://developer.android.com/develop/ui/views/notifications/notification-permission#check-app-can-send

2.2.2 Version 4.30.0

Android
Target API increased to Android 12 (API 31)

To meet new requirements for apps published on the Google Play Store, the tar-
get version of the SDK has been increased to Android 12 with API 31 or higher.
This change is needed to avoid APK rejection caused by security issues found
with the older API versions.

Minimum supported version increased to Android 6 (API 23)

The minimum supported version has been increased to fully support new fea-
tures and devices. Deprecated code has been replaced and simplified to be com-
patible with API 23 or higher.

i0S

Increased the minimum supported version to iOS 13

The minimum supported version has been increased to fully support all ARM64
devices and SwiftUl features. Deprecated code has been removed and replaced
with code fully supporting iOS 13 or higher.

Fixed internal error conversion issues

Error codes converted between Objective-C and Swift need to have the
NSCustomError setting implemented to display the correct value. Without this set-
ting, the wrong codes could be displayed from the enum. The setting has been
implemented in all the remaining error handling objects.

2.2.3 Version 4.29.2

i0S

Change of framework name to MSSNotificationClient
The framework name has been changed from NotificationClientSDK to MSSNo-
tificationClient. To use the new Objective-C API, replace all previous

NotificationClientSDK imports with #import
<MSSNotificationClient/MSSNotificationClient.h>.

APl updates — NSErrors API support for Objective-C added

The Objective-C API points no longer throw an NSException. All API points that pre-
viously would throw such an NSException now require an NSError pointer. If an error
occurs, it will be attached to the pointer that is provided as a parameter. Refer to
the Objective-C sample included in the product package for full code examples.

Usage of the Notification SDK

This section contains an overview of the Notification SDK and information about
the functions of the SDK.

3.1 The Push Notification Process 8
3.2 Overview of the OneSpan Notification SDK 10
3.3 Migration from Version 4.18.x and Previous Versions 13

3.1 The Push Notification Process

The OneSpan Notification SDK allows you to send Push notification! messages to
your mobile applications.

The push notification process involves the following entities:
e The client device
¢ Your back-end server

¢ The push notification provider (e.g. Apple, Google, Microsoft)

CAUTION: The delivery of notifications relies on the availability of the push noti-
fication provider. Thus, the notification process does not include any warranty of deliv-
ery or delay. Notifications should not be used as a safe end-to-end delivery system.

3.1.1 Client registration

During application start, the client device is registered with the push notification pro-
vider. When registration is completed, the client application gets a unique notification
identifier to send (usually via HTTP) to the back-end server for later use. Figure 1illus-

trates the registration process on iOS.

Push notification

Client device provider Back end
/ N/ N/ ™~
iOS Application ‘A:ppl'e Rish . Back-end server Back-end database
Notification Service
Register————pf
<————Unique ID
<« ————————————————Send unique ID-————— P
Store unique ID—»
< ACK/NACK
< ACK/NACK

Figure 1: Registration process iOS

TPush notifications are clickable pop-up messages that are displayed outside an app. They are
pushed from the server the app uses to the user's device.

NOTE: The registration process varies depending on the push notification provider.
A specific implementation is required for each targeted platform.

3.1.2 Notification delivery
When the server needs to send a notification to a specific client device, the server:
1. Retrieves the unique identifier from the database.
2. Creates a notification with the specific content.

3. Sends the notification to the push notification provider. The server uses the appro-
priate credentials together with the unique identifier.

The push notification provider delivers the notification to the client device. The client
device or application then creates the notification that is displayed to the user. Figure
2 illustrates the registration process on iOS.

Back end Push notification provider Client device

Get unique ID—— >

<———Unique ID

Send notification for unique ID————»

—Deliver notification—»

Figure 2: Notification delivery process (iOS)

Notification delivery is immediate in most cases. However, depending on the behavior
of the push notification provider and the reachability of the client device, delivery may
also be deferred.

NOTE: The notification delivery process varies depending on the push notification
provider. A specific implementation is required for each targeted platform.

3.2 Overview of the OneSpan Notification SDK

The OneSpan Notification SDK provides an abstraction layer that allows notification
support for mobile applications. On the client-side, the registration process is plat-
form-dependent. On the server-side, you can send notifications with a simple func-
tion, independent of the target platform.

The Notification SDK Client can be used on a variety of devices and supports the fol-
lowing platforms:

Android devices:
¢ Minimum Android 6 (API level 23)

e Target Android 13 (API level 33)

iOS devices:
¢ {OS 13 or later
e Swift 5.0 or later

e Xcode 14 or later

The Notification SDK Server can be used on a variety of devices and supports the fol-
lowing platforms:

¢ Notification SDK Server Java edition: Java-enabled platforms (Java Development
Kit (JDK) 8 and later)

e For Windows only: Notification SDK Server .NET edition: .NET 6 and later

3.2.1 Registration process

The Notification SDK Client handles registration with a unified registration function.
When the registration process is completed, the client application and the back end
receive a Notification Identifier!. Figure 3 illustrates the registration process with the
SDK.

TUnigue hexadecimal string with a maximum length of 2064 characters. The Notification SDK
assigns this identifier to the client application - it is unique to the client device, regardless of the
platform. It must be sent to the back end for later use.

Push notification
Client device provider Back end

r ~/ Y4

f) N
Notification SDK
Client

Register >

Register »

[« Unique ID

<OneSpan Notification ID

Send OneSpan
Notification ID

Store OneSpan
Notification ID

< ACK/NACK

< ACK/NACK

Figure 3: Registration process with OneSpan Notification SDK

OneSpan Notification Identifier

The OneSpan Notification Identifier is unique to the client device, regardless of the
platform (i.e. Android, iOS etc.). It is a unique hexadecimal string with a maximum
length of 2064 characters that the Notification SDK Client assigns to the client applic-
ation. It must be sent to the back end for later use.

When the Notification SDK Server sends a notification, it uses the OneSpan Noti-
fication Identifier to address the correct client device on the dedicated Push noti-
fication! provider.

Notification content

The payloads the OneSpan Notification SDK transmits are strings. Depending on the
target platform, different size limitations may apply. For more information about these
limitations, refer to the respective platform documentation.

Notification delivery

The Notification SDK Server uses the OneSpan Notification Identifier to recognize the
target device platform and apply the correct sending procedure. This comprises the
following:

1. Connect to the correct push notification provider with the appropriate credential.

2. Create a notification based on specific push notification provider requirements.

TPush notifications are clickable pop-up messages that are displayed outside an app. They are
pushed from the server the app uses to the user's device.

3. Send the notification.

On the client-side, the Notification SDK Client provides a unified way to receive and
parse incoming notifications.Figure 4 illustrates the notification delivery process.

Push notification
Back end provider Client device

= — ya N
Notification SDK
Server

Get OneSpan
Notification ID

OneSpan o
Notification ID

Send notification for
OneSpan Notification ID

| Send Notification
for unique ID

< Deliver notification—

Figure 4: Notification delivery process with OneSpan Notification SDK

3 Usage of the Notification SDK

Notification SDK Integration Guide 12

3.3 Migration from Version 4.18.x and Previous
Versions

In April 2018, Google deprecated Google Cloud Messaging (GCM). The GCM server and
corresponding client APIs are deprecated and were removed in April 2019. This
requires a migration of GCM apps to Firebase Cloud Messaging (FCM).

3.3.1 Before you begin
Before you start the migration, note:
¢ GCM and FCM SDKs cannot co-exist within the same mobile application.

¢ GCM tokens retrieved via GoogleCloudMessaging.register() or InstanceID.getToken()
continue to work in FCM without any modification or renewal.

Currently, the Notification SDK uses the FCM URLs to send and receive notifications

on Android. Those modifications only affect the Android side on both the client- and
the server.

NOTE: FCM can manage both GCM and FCM tokens; therefore, the server-side must
be migrated before the client side.

3.3.2 Android server-side

There are two ways to migrate the server-side:

* Via the project number equivalent or legacy key. This is the easiest way to com-
plete the migration, and requires less effort for the migration. To migrate the
server-side, update the server . jar dependencies. The new library connects auto-
matically to the FCM back end to send the notification.

» Via OAuth and the Firebase account JSON file. This is the quickest way to con-

nect to the Firebase back end, and the cleanest solution if you do not have an
existing code base.

For more detailed information on those steps, see 4.1.1 Integrate the Notification
SDK Client with Android and A.1 Enable Push Notification in a Google project.

13

3.3.3 Android client-side

Since GCM and FCM SDKs cannot co-exist within the same mobile application, the
migration requires code modifications.

14

Notification SDK Client

The Notification SDK Client provides numerous client functions to integrate the
Notification SDK on various platforms. It serves to receive the notifications and
obtain the unique identifier the server requires to send the notification to the inten-
ded application on the correct mobile device.

4.1 Integrate the Notification SDK Client 16

15

4.1 Integrate the Notification SDK Client

This section provides an overview of the Notification SDK Client functions and instruc-
tions to integrate the SDK on various platforms.

4.1.1 Integrate the Notification SDK Client with Android

The following procedure allows you to integrate and use the Notification SDK Client in
your Android project.

» To use the Notification SDK Client in your Android project

1. Copy NotificationSDKClient.aar from the OneSpan Mobile Security Suite package
to your project.
2. Add the Google Play services project as a dependent library.

For more information, refer to https://firebase.google.com/docs/android/setup.

3. Configure your manifest to be able to receive a notification.

EXAMPLE: AndroidManifest.xml

01. <application>

02. <activity android:name="ActivityName">

03.

04. <!-- This intent filter is used to select the activity that
05.| will be launched when the user clicks on a notification.
06. The MIME type is customizable. Make sure it matches the

07.| “notificationMIMEType” property in the assets/onespan-

notifications.properties
08.| file. -->

09. <intent-filter>

16

https://firebase.google.com/docs/android/setup

10. <action android:name="android.intent.action.VIEW"/>

11. <category android:name=
"android.intent.category.DEFAULT" />

12. <data android:mimeType=
"application/vnd.com.vasco.notification.NOTIFICATION_
ACTIVITY"/>

13. </intent-filter>

14. </activity>

15. <meta-data
android:name="com.google.android.gms.version"
android:value="@integer/google_play_services_version"/>

16.| </application>

NOTE: If you target Android 13, you need to declare the POST_NOTIFICATIONS per-
mission in the AndroidManifest.xml of the application.

NOTE: As of version 4.17.2 of the OneSpan Notification SDK, the library is
delivered as an AAR file.

The AAR file embeds an AndroidManifest.xml file; thus less information is required
in the AndroidManifest.xml of the application.

Create a onespan-notifications.properties file in the assets folder.

This file must contain several properties, each of which has a key/value pair. The
key and value are separated by an equal sign (=). For example:

notificationMIMEType=application/vnd.com.vasco.notification.NOTIFICATION_ACTIVITY

Table 1 lists the mandatory and optional properties to include in the file:

17

Table 1: Properties in the onespan-notifications.properties file

Key

notificationMIMEType

notificationIconName

notificationIconNamelLollipop

Mandatory

v

Description

Mime type that is
used when a noti-
fication is received.
This must be the
same value as the
one specified in the
manifest.
Icon displayed in the
notification center
when a notification is
received. This icon file
must be in a .png
format and must be
added as a resource.
Icon displayed in the
notification center
when a notification is
received. This prop-
erty is used on
Android 5.0 and later.
The icon can only be
white and trans-
parent, must be in a
.png format and
must be added as a
resource.

18

Table 1: Properties in the onespan-notifications.properties file (continued)

Key

notificationIconBackgroundColorLollipop

notificationOpenInForeground

Mandatory

Description

Background color
used for the noti-

fication icon when a
notification is dis-
played on the noti-
fication drawer. This
property is used on
Android 5.0 and later.
Supported formats
are:

« #RRGCGBB
e #AARRGGBB,

e Oryou can use
the following
color terms:

red, blue,
green, black,
white, gray,
cyan, magenta,
yellow,
lightgray,
darkgray, grey,
lightgrey,
darkgrey, aqua,
fuchsia, lime,
maroon, navy,
olive, purple,
silver, teal.
Optional Boolean
switching behavior of
the notifications that
are received while
the applicationisin
foreground. Default
value: false.

19

01.

02.

03.

04.

05.

EXAMPLE: onespan-notifications.properties:

notificationMIMEType=application/vnd.com.vasco.notification.NOTIFICATIO
N_ACTIVITY

notificationIconName=ic_notification.png
notificationIconNamelLollipop=ic_notification_lollipop.png
notificationIconBackgroundColorlLollipop=#848484

notificationOpenInForeground=true

5. Retrieve google-services. json from your Firebase project. This file is mandatory to
enable FCM from your Android project. For more information about obtaining
this file, see A1 Enable Push Notification in a Google project. This file must be

downloaded from your Firebase project:

¢ Go to Console -> Select Project -> Project Settings and open the General
tab.

¢ Retrieve google-services. json and replace the . json file inside the app sample
project repository.

You are now ready to use the Notification SDK Client.

20

SDKClientSampleActivity.java [Sample.app]

Activity

String = NotificationSDKClientsS: vity. .getName ()

registerVascoSDK()

Notifi

iThread(() -> {

nIdentifier)

dManager) getSystemService(

clipboard.setPrimaryClip(clipData)

Figure 5: Integrate the Notification SDK Client (Android)

4.1.2 Integrate the Notification SDK Client with iOS

The following procedure allows you to integrate and use the Notification SDK Client in
your iOS project.

» To use the Notification SDK Client in your iOS project

1. Link MSSNotificationClient.xcframework from the OneSpan Mobile Security Suite
package to your Xcode project (linked framework and libraries).

2. Inyour .plist file, add the App downloads content in response to push noti-
fications mode (raw value: <remote-notification>) to the list associated with the
Required background modes property (raw value: UIBackGroundModes) .

3. Make sure your application bundle identifier matches that in the provisioning pro-
file that has been created for this specific application with the Remote noti-
fications capability.

You are now ready to use the Notification SDK Client.

21

P B | Anotple) [05Device

Info.plist

a

¥
DKClientSample | Build 09/06/15 at 16:10 A3 ERvEZ=EE =N |
[] NotificationsDKClientSamplexcod.. main.m T +
B s QA & o B (B« DKC| =] DKCI (2] Supporting Files Info.plist » No Selection 4hr
vE ti i Key Type Value
1 target, i05 SDK 8.2 v Information Progerty List Dictionary (15 items)
¥ [libs Localization native development r.. 4 Sring en :
| libUtilitiesSDK.a Executable file 4 suing $(EXECUTABLE_NAME)
» (55 NotificationSDKClient.framework Bundle identifier + Swing le.noti S(PRODUCT_NAME:rfc
v NotificationSDKClientSample InfoDictionary version 4 Siing 6.0
h| AppDelegate.h Bundle name 4 Suing $(PRODUCT_NAME)
L) AppDelegate.m Bundle OS Type code 4 Suing APPL
h] ViewController.h Bundle versions string, short + Swing Lo
m ViewController.m Bundle creator O Type code + Swing ?
| Main.storyboard Bundle version 4 Suing 1
Images.xcassets Application requires iPhone envir... & Boolean YES B
) LaunchScreen.xib ¥ Required background modes 4 Aray (1 item)
v (] Supporting Files Item 0 ©@ Suing + App downloads content in response to push notifications B
Launch screen interface file base.. & String LaunchScreen
m) m: Main storyboard file base name & String Main
» (] Products ¥ Required device capabilities. s Amay (1 item)
Item 0 String armv?
¥ Supported interface orientations 4 Array (1 item)
item 0 String Portrait (bottom home button) :

Figure 6: Integrate the Notification SDK Client (iOS)

22

Notification SDK Server

The Notification SDK Server provides numerous server functions to integrate the
Notification SDK on various platforms. It is used to send raw-data messages to the
Notification SDK Client based on a previously received unique identifier.

5.1 Integrate the Notification SDK Server Sample 24

5.2 Migration from Version 4.24.x and Previous Versions on .NET 26

23

5.1 Integrate the Notification SDK Server Sample

This section provides instructions to integrate the Notification SDK Server sample in
Java and .NET.

NOTE: The Notification SDK Server requires .NET Framework 6 (for Windows only)
or Java 8.

5.1.1 Integrate the Notification SDK Server in a Java project

The following procedure allows you to integrate and use the Notification SDK Server in
your Java project.

» To use the Notification SDK Server sample in your Java project

1. Link the libraries from the OneSpan Mobile Security Suite package to your pro-
ject's classpath.

2. InNotificationSDKServerSample. java, replace the following variables according to
your device:

Android

¢ Adjust the ANDROID_VASCO_NOTIFICATION_IDENTIFIER variable to set up the
OneSpan Notification Identifier for your device. You can retrieve it from your
client sample integration after the notification service registration.

e Adjust the ANDROID_PROJECT_KEY variable to set up your Android project key
(APl key). You can retrieve it from the Google API Console.

iOS

e Adjust the I0S_VASCO_NOTIFICATION_IDENTIFIER variable to set up the Noti-
fication Identifier! for your device. You can retrieve it from your client
sample integration after the notification service registration.

TUnigue hexadecimal string with a maximum length of 2064 characters. The Notification SDK
assigns this identifier to the client application - it is unique to the client device, regardless of the
platform. It must be sent to the back end for later use.

¢ Update the Boolean variable I0S_USE_DEVELOPMENT_SERVER as needed. Note that
this also depends on the used PKCS #8 key.

e Adjust the I0S_P8_KEY_PATH variable to set up the path of your PKCS #8 key.
e Adjust the I0S_KEY_ID variable to set up the password of your PKCS #8 key.

¢ Adjust the I0S_TEAM_ID variable to set up the identifier of the team that is
responsible for the creation of the PKCS #8 key.

You are now ready to use the Notification SDK Server.

5.1.2 Integrate the Notification SDK Server in a .NET project

The Notification SDK Server contains a solution sample to demonstrate how to integ-
rate the SDK in your .NET project. describes the necessary steps for the integration.

» To use the Notification SDK Server in your .NET project

1. Copy NotificationSDKServer.dll from the OneSpan Mobile Security Suite package
in the 1ib folder.

NOTE: The token-based authentication scheme is the only available method to send
push notifications to iOS devices.

You are now ready to use the Notification SDK Server.

25

5.2 Migration from Version 4.24.x and Previous
Versions on .NET

Apple updated the Push Notification service, and as of November 2020, the Apple
Push Notification service (APNs) no longer supports the legacy binary protocol. Apple
recommends an update to the HTTP/2-based APNs provider API. When you use
HTTP/2, you must also update the framework to use PKCS #8 because of constraints
when PKCS #12 is used with HTTP/2: It is not possible to use a PKCS #12 client cer-
tificate for notifications on an HTTP/2 connection in .NET, and to deliver a Windows lib-
rary that forces the usage of this certificate. Apple Push Notification service (APNs)
requires to only use cipher methods that are available from Windows Server 2016.

26

Appendix: Platform-Specific Steps to A

Integrate the OneSpan Notification
SDK

Depending on your platform, you need to complete additional platform-specific steps
when you integrate the OneSpan Notification SDK.

27

A.1 Enable Push Notification in a Google project

OneSpan proposes two solutions to enable Push Notification! on Android. To connect
to Firebase Cloud Messaging (FCM), you can use one of the following:

¢ Android project key

¢ Google services account.

After the connection is set, you can migrate the server- and client sides of your project
to FCM.

» To get the Android project key

1. In the Firebase console (https://console.firebase.google.com), import your
Google project.

2. From the project settings, retrieve the server key for cloud messaging.
3. Use this server key for the content of the Android project key.

4. Use the sender ID in your mobile application (ANDROID_PROJECT_NUMBER constant in
the Android sample).

For more information about the creation and import of projects in the Firebase con-
sole, refer to the Firebase documentation at https://firebase.google.com/docs.

» To get a google-services. json file

* |n the Firebase console (https://console.firebase.google.com), import your
Google project.

¢ Download the google-services. json file; this file should replace the existing con-
figuration file in the SDK sample.

TPush notifications are clickable pop-up messages that are displayed outside an app. They are
pushed from the server the app uses to the user's device.

28

https://console.firebase.google.com/
https://firebase.google.com/docs
https://console.firebase.google.com/

» To migrate from Google Cloud Messaging (GCM) to Firebase Cloud
Messaging with the Notification SDK

1. Migrate the server-side of your project.

This step is required to comply with Google's announcement about the end of life
for Google Cloud Messaging (GCM) as of April 2019. When you update the Noti-
fication SDK, the applications that are enabled for GCM as well as the future
mobile application can be notified. The Firebase server-side can handle both iden-

tifier types.

NOTE: If you still have a legacy server key in your old project, it can be used but
we recommend using the server key available on FCM.

¢ The server-side can be migrated with the previous settings. You can use
either the Android project key or the Firebase service account credentials

mechanism.

NOTE: The Firebase service account credentials option allows an OAuth

connection to the Firebase back end.

2. Migrate the client-side of your project.

This step is necessary for a complete migration to Firebase Cloud Messaging
(FCM). When you update the mobile application, the previous version will still
work and receive notifications with the updated server library.

29

A.2 Enable Push Notification in an iOS project with
token-based authentication scheme

With the token-based authentication scheme, a private key is used to authenticate to
the Apple Push Notification Service. It is simpler to use this authentication scheme

because:
¢ The same key can be used for development and production apps.

¢ The same key can be used for all your apps as referenced in your Apple developer
account.

¢ The key does not expire.

» To use the Push Notification feature in your iOS application with a
token-based authentication scheme

1. Connect to your Apple Developer Account
(https://developer.apple.com/account).

2. Select Certificate, IDs & Profiles and Keys
(https://developer.apple.com/account/ios/authkey).

3. Select the APNs check box to create a new key.

4. Download the key and store it in a secure location.

30

https://developer.apple.com/account
https://developer.apple.com/account/ios/authkey

A.3 Enable Push Notification in an iOS project with
certificate-based authentication scheme

» To use the Push Notification feature in your iOS application with a
certificate-based authentication scheme

1. Connect to your Apple Developer Account
(https://developer.apple.com/account).

2. Locate or create your App ID that matches your bundle ID to enable the noti-
fication service. The bundle ID must be specific to your application (no wildcards
are allowed for push notifications).

3. Generate a client SSL certificate for the connection between your notification
server and the Apple Push Notification Service.

NOTE: You can work with separate client SSL certificates for development and
production. When you use a development certificate, you must use the sandbox
gateway.

4. Verify that your provisioning profiles now include the Push Notification service.

31

https://developer.apple.com/account

Appendix: FAQ

Question: How should | migrate from Google Cloud Messaging
(GCM) to Firebase Cloud Messaging (FCM) with the Notification SDK?

Answer: The migration should be done in two steps:

1. Update the Notification SDK Server to version 4.19.0 or later, including its
dependencies. If you want your server to use the OAuth mechanism to com-
municate with FCM, an additional configuration step is necessary.

2. Update your mobile application with the Notification SDK.

Question: Are previous versions of the Notification SDK Server
compatible with the Android Firebase Cloud Messaging (FCM)
version?

Answer: No, the Notification SDK Server from versions 4.18.x or earlier is not com-

patible with FCM. From version 4.19.x and later, the Notification SDK Server is able
to handle FCM and GCM identifiers.

Question: On iOS, why is the notification permission not requested
again when the application is re-installed?
Answer: For the notification permission to be again requested, the application

must remain uninstalled for at least one day. For more information, refer to iOS
Technical Note TN2265.

Question: On iOS, why does the client device not receive all the
notifications that | send?
Answer. Depending on the device availability, if multiple notifications are sent,

the Apple Push Notification service (APNs) may send only the last one. For more
information, refer to iOS Technical Note TN2265.

32

https://developer.apple.com/library/ios/technotes/tn2265/_index.html#//apple_ref/doc/uid/DTS40010376-CH1-TNTAG42
https://developer.apple.com/library/ios/technotes/tn2265/_index.html#//apple_ref/doc/uid/DTS40010376-CH1-TNTAG42
https://developer.apple.com/library/ios/technotes/tn2265/_index.html#//apple_ref/doc/uid/DTS40010376-CH1-TNTAG23

Question: Why does the notification not arrive on the client device
when it was successfully sent by the server?

Answer: You need to wait a few seconds after you sent the notification so that
one of the success/failure callbacks is called.

Question: On iOS, why do | get an Invalid token error when a
notification is sent?

Answer: This happens, for example, when the client device is connected to the
development version of the Apple Push Notification service (APNs), while the
server is connected to the APNs production version, or vice versa. Check
useSandboxGateway in the NotificationSDKServerCredentials class and verify it is con-
sistent with the used PKCS #12 certificate.

Question: On iOS, why is the icon badge not correctly
incremented/decremented?
Answer: The icon badge can be set in the notification and is hence managed by
the server. Value Oclears the icon badge, a negative value does not affect the icon
badge, and any positive value is displayed in the icon badge. Once the noti-

fication is received, it is up to the client application to handle the icon badge
value as needed. Usually the badge value is decremented.

Question: On iOS, why are my notifications displayed under the old
application name in the notification center?

Answer: If the client device is rebooted, the device data are updated, and the cor-
rect application name is displayed in the notification center.

Question: Why do | not receive notifications on my device when
sending from the server seems to be working properly?
Answer: Check the network settings on the device, your network security set-

tings and the firewall settings. The device must be connected to the public inter-
net.

33

Index

NET
integrate the SDK 25
supported platforms 10

A

Android
enable Push Notification 28
integrate the SDK 16
integrate the SDK, example mani-
fest configuration 16
migrate from GCM to FCM, migra-
tion steps 29
OneSpan Notification Identifier 24
SDK server migration from version
418 13
Apple Push Notification service, migra-
tion from earlier version 26

C

certificate-based authentication
scheme, Push Notification 31

client registration, push notification
process 8

E

Example Android manifest con-
figuration 16

F

Firebase account JSON file, server
migration from earlier version 13

Firebase Cloud Messaging, migrate
apps 13

Firebase Cloud Messaging, migration
from Google Cloud Messaging 32

G

Google Cloud Messaging,
deprecated 13

H

HTTP/2 update framework, SDK migra-
tion from earlier version 26

integration steps
.NET 25
Android 16
i0S 21
Java 24
[O)S
enable Push Notification, cer-
tificate-based authentication
scheme 31
enable Push Notification, token-
based authentication
scheme 30

34

integrate the SDK 21
notification delivery process, illus-
tration 9
OneSpan Notification Identifier 24
registration process, illustration 8
SDK migration from version
424X 26

J

Java
integrate the SDK 24
supported platforms 10

L

legacy key, server migration from
earlier version 13

M

Migration from earlier version, iOS 26

N

notification delivery N
notification delivery, caution notice 8
notification properties configuration,
example 20
Notification SDK Client
integration steps, Android 16
integration steps, i0OS 21
Notification SDK Server
integration steps, .NET 25
integration steps, Java 24
notification. 16

@)

OAuth, server migration from earlier
version 13
OneSpan Notification Identifier 1

P

payloads 11
PKCS #8 framework update, SDK
migration from earlier version 26
project number equivalent, server
migration from earlier version 13
push notification
client registration 8
notification delivery 9
process overview 8
Push Notification, enable with
Android project key or Google ser-
vices account 28

R

registration process with the SDK 10

S

SDK server migration from earlier ver-
sion, Android 13
supported platforms 10

T

token-based authentication scheme,
Push Notification 30

35

U

unique identifier, Notification SDK Cli-
ent 15

unique identifier, Notification SDK
Server 23

unique notification identifier 8

36

	1 Introduction
	2 What's new in the Notification SDK
	2.1 Version 4.31.0
	2.2 Previous versions

	3 Usage of the Notification SDK
	3.1 The Push Notification Process
	3.2 Overview of the OneSpan Notification SDK
	3.3 Migration from Version 4.18.x and Previous Versions

	4 Notification SDK Client
	4.1 Integrate the Notification SDK Client

	5 Notification SDK Server
	5.1 Integrate the Notification SDK Server Sample
	5.2 Migration from Version 4.24.x and Previous Versions on .NET

	A Appendix: Platform-Specific Steps to Integrate the OneSpan Notification SDK
	A.1 Enable Push Notification in a Google project
	A.2 Enable Push Notification in an iOS project with token-based authentication scheme
	A.3 Enable Push Notification in an iOS project with certificate-based authentication scheme

	B Appendix: FAQ
	Index

