
Orchestration SDK
Integration Guide

Version: 5.10



Copyright Notice

Copyright © 2013–2024 OneSpan North America, Inc. All rights reserved.

Trademarks

OneSpan™, DIGIPASS® and CRONTO® are registered or unregistered trademarks of OneSpan North America Inc.,
OneSpan NV and/or OneSpan International GmbH (collectively "OneSpan") in the U.S. and other countries.

OneSpan reserves all rights to the trademarks, service marks and logos of OneSpan and its subsidiaries.

All other trademarks or trade names are the property of their respective owners.

Intellectual Property

OneSpan Software, documents and related materials (“Materials”) contain proprietary and confidential information.
All title, rights and interest in OneSpan Software and Materials, updates and upgrades thereof, including software
rights, copyrights, patent rights, industrial design rights, trade secret rights, sui generis database rights, and all other
intellectual and industrial property rights, vest exclusively in OneSpan or its licensors. No OneSpan Software or Mater-
ials may be downloaded, copied, transferred, disclosed, reproduced, redistributed, or transmitted in any form or by
any means, electronic, mechanical or otherwise, for any commercial or production purpose, except as otherwise
marked or when expressly permitted by OneSpan in writing.

Disclaimer

OneSpan accepts no liability for the accuracy, completeness, or timeliness of content, or for the reliability of links to
and content of external or third party websites.

OneSpan shall have no liability under any circumstances for any loss, damage, or expense incurred by you, your com-
pany, or any third party arising from the use or inability to use OneSpan Software or Materials, or any third party
material made available or downloadable. OneSpan will not be liable in relation to any loss/damage caused by modi-
fication of these Legal Notices or content.

Reservation

OneSpan reserves the right to modify these Notices and the content at any time. OneSpan likewise reserves the right
to withdraw or revoke consent or otherwise prohibit use of the OneSpan Software or Materials if such use does not
conform to the terms of any written agreement between OneSpan and you, or other applicable terms that OneSpan
publishes from time to time.

Contact us

Visit our website: https://www.onespan.com
Resource center: https://www.onespan.com/resource-center
Technical support and knowledge base: https://www.onespan.com/support

If there is no solution in the knowledge base, contact the company that supplied you with the OneSpan product.

Date: 2024-11-28

https://www.onespan.com/
https://www.onespan.com/resource-center
https://www.onespan.com/support


Contents

1 Introduction 1

2 What's new in the Orchestration SDK 2

2.1  Version 5.10.1 3

2.2  Previous versions 4

3 Using the Orchestration SDK 9

3.1  Overview of the Orchestration SDK 10

3.2  Features of the Orchestration SDK 12

4 Integrate the Orchestration SDK 38

4.1  Integrating OneSpan Orchestration SDK with Android 39

4.2  Integrating OneSpan Orchestration SDK with iOS 42

5 Exposed APIs in the Orchestration SDK 44

5.1  Core 45

5.2  Activation 48

5.3  Notification registration 49

5.4  Remote authentication 50

5.5  Remote transaction 51

5.6  Local authentication 52

5.7  Local transaction 54

5.8  Authentication method 56

Orchestration SDK Integration Guide i



5.9  Change password 62

5.10  Device data collection 63

5.11  Multi-user management 65

Index 66

Orchestration SDK Integration Guide ii



Figures

Figure 1: Orchestration example – remote authentication overview 10

Figure 2: Activation workflow 13

Figure 3: Notification registration workflow 16

Figure 4: Remote authentication workflow 19

Figure 5: Remote transaction workflow 23

Figure 6: Local authentication workflow 26

Figure 7: Local transaction workflow 28

Figure 8: Authentication using a virtual keypad 30

Figure 9: Authentication using biometric recognition 31

Figure 10: External user authentication workflow 32

Figure 11: Change password workflow 35

Orchestration SDK Integration Guide iii



Tables

Table 1: Virtual keypad - Text customization keys 56

Table 2: Biometric recognition 56

Table 3: Virtual keypad - Color customization keys 57

Table 4: Virtual keypad - Font size customization keys 57

Table 5: Virtual keypad - Graphical elements customization keys for iOS 58

Table 6: Virtual keypad - Font customization for Android 58

Table 7: Virtual keypad - Drawable element customization for Android 59

Table 8: Virtual keypad - Background customization for Android 59

Orchestration SDK Integration Guide iv



Procedures

Activation workflow of OneSpan Orchestration SDK 14

Notification registration workflow 17

Remote authentication workflow 19

Remote transaction workflow 23

Local authentication workflow 26

Local transaction workflow 28

User authentication flow 33

Change password workflow 35

To use OneSpan Orchestration SDK in your Android project 39

Using OneSpan Orchestration SDK in your iOS project 42

Orchestration SDK Integration Guide v



1Introduction

Welcome to the Orchestration SDK Integration Guide! This document describes how
to integrate the Orchestration SDK.

This document provides information about:

l Features of the Orchestration SDK

l Exposed APIs

l Integration steps

1 Introduction
Orchestration SDK Integration Guide 1



2What's new in the Orchestration SDK

This section provides an overview of changes introduced in the Orchestration SDK
to facilitate the integration of the SDK and provide information on backward com-
patibility.

2.1  Version 5.10.1 3

2.2  Previous versions 4

2 What's new in the Orchestration SDK
Orchestration SDK Integration Guide 2



2.1  Version 5.10.1

2.1.1  Android

[INC0013466]-[MSS-9937] Issue with StrongBoxUnavailableException in
Device Binding SDK

Recently, an issue with fingerprint generation arose in the Device Binding SDK,
that is related to StrongBoxUnavailableException.

NOTE: Please note that this is not an issue of our SDKs but is caused on the
manufacturer's side and outside the control of OneSpan. There is the possibility
that this may be fixed automatically in the future.

To avoid the StrongBoxUnavailableException, the Orchestration SDK internally
checks for this exception from the Device Binding SDK and falls back to gen-
erating the fingerprint using TEE.

For more information, see the [INC0013679]-[MSS-10210] Fallback mechanism for
StrongBoxUnavailableException entry in the What's New section of the Device
Binding SDK Integration Guide (also available online at Fallback mechanism for
StrongBoxUnavailableException).

2 What's new in the Orchestration SDK
Orchestration SDK Integration Guide 3

https://docs.onespan.com/docs/mss-device-binding-sdk-release-version-5-4-0#[INC0013679]-[MSS-10210] Fallback mechanism for StrongBoxUnavailableException
https://docs.onespan.com/docs/mss-device-binding-sdk-release-version-5-4-0#[INC0013679]-[MSS-10210] Fallback mechanism for StrongBoxUnavailableException


2.2  Previous versions

2.2.1  Version 5.10.0

2.2.2  Android

Minimum supported version increased to Android 7 (API 24)

The minimum supported version of the SDK has been increased to Android 7
with API level 24.

2.2.3  iOS

Minimum supported version increased to iOS 14

The minimum supported version of the SDK has been increased to iOS 14.

2.2.4  Version 5.9.0

Android

Target API level increased to Android 14 (API 34)

The target version of the SDK has been increased to Android 14 with API level 34.

2.2.5  Version 5.8.1

iOS

Retrievable property removed

For the OneSpan Client Device Data Collector (CDDC) SDK, the Keyboard iden-
tifier property has been removed from the retrievable device and event prop-
erties for iOS due to a new limitation introduced by Apple.

Privacy manifest updated

The privacy manifest for the Orchestration SDK has been updated. The SDK can
use geolocalization to track the user for analytic and security-related purposes.
This applies to both coarse and precise geolocalization.

2 What's new in the Orchestration SDK
Orchestration SDK Integration Guide 4



2.2.6  Version 5.8.0

All platforms

API improvement for crypto app indexes

The name and value names of the API crypto app indexes have been unified and
now have the same names as used by Digipass:

l Name: CryptoAppIndex (instead of CryptoApplicationIndex)

l Value:

l Android: app<number> or, on Java, APP_1, APP_2 etc. (instead of FIRST,
SECOND, THIRD etc.)

l iOS (Swift): app<number> (app1, app2 etc.) (instead of index<number>)

Android

CDDC keys deprecated (MSS-8259)

For the CDDC SDK, a number of properties and their corresponding setters have
been deprecated and will be removed in a future version. With this, the following
properties and setters will also be no longer available for the Orchestration SDK:

l Native code hooks

l Application repackaged

l Debugger attached

iOS

CDDC keys deprecated (MSS-8248)

For the CDDC SDK, a number of properties and their corresponding setters have
been deprecated and will be removed in a future version. With this, the following
properties and setters will also be no longer available for the Orchestration SDK:

l Rooting probability

l Root status

l Untrusted keyboard

2 What's new in the Orchestration SDK
Orchestration SDK Integration Guide 5



l Untrusted screen-readers

l Native Code hooks

NOTE: The Root status (Key 15) property and its corresponding setter has been
renamed for iOS to DeviceJailbroken.

2.2.7  Version 5.7.0

Android

Updated readme file

The readme file in the product package has been improved to include more com-
prehensive steps and configuration options.

iOS

Bitcode support has been eliminated

Following the deprecation of Bitcode by Apple, we no longer support and have
removed all Bitcode from the SDK framework.

2.2.8  Version 5.6.3

Android

Target API increased to 33

To meet new requirements for apps published on the Google Play Store, the tar-
get version of the SDK has been increased to Android 13 with API level 33. This
change is needed to avoid APK rejection caused by security issues found with
older API versions.

2.2.9  Version 5.6.2 (hotfix)

Access Group required for orchestration

On iOS, to avoid an issue reported by a customer related to the Device Binding
Access Group, we introduced a change in the implementation procedure. As of
this release, it is mandatory to provide an access group when creating an orches-

2 What's new in the Orchestration SDK
Orchestration SDK Integration Guide 6



tration. For existing integrations, the AppPrivate access group must be used for
activated users when creating an orchestration.

2.2.10  Version 5.6.0

Android

Target API increased to Android 12 (API 31)

To meet new requirements for apps published on the Google Play Store, the tar-
get version of the SDK has been increased to Android 12 with API 31 or higher.
This change is needed to avoid APK rejection caused by security issues found
with the older API versions.

Minimum supported version increased to Android 6 (API 23)

The minimum supported version has been increased to fully support new fea-
tures and devices. Deprecated code has been replaced and simplified to be com-
patible with API 23 or higher.

iOS

Increased the minimum supported version to iOS 13

The minimum supported version has been increased to fully support all ARM64
devices and SwiftUI features. Deprecated code has been removed and replaced
with code fully supporting iOS 13 or higher.

Fixed internal error conversion issues

Error codes converted between Objective-C and Swift need to have the
NSCustomError setting implemented to display the correct value. Without this set-
ting, the wrong codes could be displayed from the enum. The setting has been
implemented in all the remaining error handling objects.

2.2.11  Version 5.5.1

Android

Maven repository

The Orchestration SDK and its Mobile Security Suite dependencies are now
delivered exclusively through a local Maven repository. Due to this, you need to
perform the following steps:

2 What's new in the Orchestration SDK
Orchestration SDK Integration Guide 7



l Indicate the URL to the maven folder in the gradle as an available repository.

l Indicate the Orchestration SDK as a dependency with the following line:

api 'com.onespan:sdk_orchestration_android:<version>'

Refer to the Android sample included in the product package for full code
examples.

iOS

Change of framework name toMSSOrchestration

The framework name has been changed from OrchestrationSDK toMSSOrches-
tration. To use the new Objective-C API, replace all previous OrchestrationSDK
imports with #import <MSSOrchestration/MSSOrchestration.h>.

API updates – NSErrors API support for Objective-C added

The Objective-C API points no longer throw an NSException. All API points that pre-
viously would throw such an NSException now require an NSError pointer. If an error
occurs, it will be attached to the pointer that is provided as a parameter. Refer to
the Objective-C sample included in the product package for full code examples.

2 What's new in the Orchestration SDK
Orchestration SDK Integration Guide 8



3Using the Orchestration SDK

The Orchestration SDK enables mobile developers to integrate the main features
provided by OneSpan Mobile Security Suite.

3.1  Overview of the Orchestration SDK 10

3.2  Features of the Orchestration SDK 12

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 9



3.1  Overview of the Orchestration SDK
The SDK consists of a client component. This component interprets the orchestration
commands and executes them in a mobile application, fully hiding the complexity of
the secure features’ integration. The encoding and decoding of the orchestration com-
mands is transparent to the mobile application.

Figure 1 illustrates an example of orchestration. It provides an overview of the Remote
Authentication feature. If there is a risk for a given login request (e.g. unknown com-
puter), the OneSpan Trusted Identity platform (TID) can dynamically request a step-up
authentication on the mobile application using an authentication method (e.g. bio-
metric recognition) that has been previously defined for that type of risk.

Figure 1: Orchestration example – remote authentication overview

3.1.1  Supported platforms and requirements

The Orchestration SDK supports the following platforms for an integration in a mobile
application:

Android devices:

l Minimum Android 7 (API level 24)

l Target Android 14 (API level 34)

iOS devices:

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 10



l iOS 14 or higher

l Swift 5.0 or higher

l Xcode 15 or higher

For more information about the Orchestration SDK features and functionalities, refer
to 3.2   Features of the Orchestration SDK.

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 11



3.2  Features of the Orchestration SDK
This chapter describes the main features and functionalities of the Orchestration SDK.
The features are illustrated using workflow diagrams, and involve the following com-
ponents:

l Orchestration SDK

NOTE: For more information on the users and device commands, refer to the
TID Platform API Sandbox.

l Customer Mobile Application. Your mobile application which integrates the
Orchestration SDK.

l User. The individual using the Customer Mobile Application on their mobile
device.

l Customer Website. Your website which users can access to perform sensitive
actions (e.g. initiating an authentication request).

l Customer Application Server. Your server component which exposes Web ser-
vices accessed by the Customer Mobile Application and the Customer Website.

NOTE: Some server infrastructure considerations have been omitted on purpose in
this document to ease the understanding of the features (e.g. front end/back end,
database etc.).

In the next sections, these points will be considered as properly integrated in the Cus-
tomer Application Server.

l OneSpan Trusted Identity platform. A server component provided and hosted
by OneSpan, which handles the server features of the Orchestration SDK.

l Push Notification Service. Notification service provided by Apple and Google,
which can send push notification messages to Android and iOS devices.

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 12

https://community.onespan.com/products/intelligent-adaptive-authentication/sandbox#


3.2.1  Activation

With the activation feature of the Orchestration SDK you can provision authenticator
instances to the Customer Mobile Application by securely exchanging activation data
with OneSpan Trusted Identity platform. The activation process is initiated on the Cus-
tomer Website, and then continued and completed using the Customer Mobile
Application. Four network requests are required between the Customer Mobile Applic-
ation and the Customer Application Server to complete the activation process.

The activation process will provision two authenticator instances in the Customer
Mobile Application. For security reasons, each authenticator instance will be linked to
a given authentication method: one instance for the password authentication method
and another for the other authentication methods (No password and biometric recog-
nition).

For more details concerning the authentication methods, see 3.2.7   Authentication
methods.

Figure 2: Activation workflow

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 13



▶  Activation workflow of OneSpan Orchestration SDK

1. The user initializes an activation session via the Customer Website, by providing
their user identifier and static password.

2. The Customer Website transmits the user identifier and the static password to
the Customer Application Server.

3. The Customer Application Server calls the https://{tenant}.
{environment}.tid.onespan.cloud/v1/users/register endpoint from the OneSpan
Trusted Identity platform API by providing their user identifier and the static pass-
word. In case of success, the web service returns the activation password.

4. The Customer Application Server notifies the Customer Website that registration
has been completed.

5. The Customer Application Server transmits the activation password to the user
via a channel other than the network (e.g. by sending an SMS message or an e-
mail). The activation password remains valid for 10 minutes.

6. The user enters their user identifier and the activation password in the Customer
Mobile Application to start the activation process.

7. The Customer Mobile Application calls the startActivationmethod of the Orches-
tration SDK to start the activation process.

8. The Orchestration SDK displays a virtual keypad or calls the password user
authentication flow, where the user can define their password, and confirm it.

9. The Orchestration SDK builds the first orchestration command required for the
activation process and transmits it to the Customer Mobile Application using the
onActivationStepCompletemethod.

10. The Customer Mobile Application transmits the orchestration command to the
Customer Application Server.

11. The Customer Application Server calls the orchestration-commandsWeb service of
the OneSpan Trusted Identity platform by providing the orchestration command.
A new orchestration command is returned as a result.

12. The Customer Application Server transmits the orchestration command to the
Customer Mobile Application as a response to the previous request.

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 14

https://community.onespan.com/products/onespan-cloud-authentication/sandbox#/Users/userRegisterUsingPOST
https://community.onespan.com/products/onespan-cloud-authentication/sandbox#/Users/userRegisterUsingPOST


13. The Customer Mobile Application calls the executemethod of the Orchestration
SDK to continue the activation process.

14. A second activation step repeats steps 9 to 13.

15. A third activation step repeats steps 9 to 13.

16. A fourth activation step repeats steps 9 to 13.

17. The Orchestration SDK finalises the activation process and transmits the status to
the Customer Mobile Application using the onActivationSuccessmethod.

18. The Customer Mobile Application notifies the user that the activation has been
successfully completed.

NOTE: 3.2.2   Notification registration is required to finalize activation.

After a successful activation process, the Customer Mobile Application can use the
other features of the Orchestration SDK (e.g. authentication, notification registration
etc.).

See 5.2   Activationfor more information how to integrate this feature.

3.2.2  Notification registration

To be able to use push notification messages for remote authentication and remote
transactions, the Customer Mobile Application must complete a notification regis-
tration process.

Notification registration consists in obtaining a notification identifier from the Push
Notification Service, and in transmitting it to the OneSpan Trusted Identity platform
via a dedicated orchestration command. The notification identifier is unique per
device and per app.

For more information, refer to the Notification SDK Integration Guide.

The notification registration process can only be completed if the Customer Mobile
Application has been activated (see 3.2.1   Activation); this process must take place
after a successful activation (mandatory for finalizing the activation flow on the server-
side) and at application startup (only if the notification identifier has changed).

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 15



CAUTION: Notification registration is mandatory for finalizing the activation process
on the server-side.

Figure 3 illustrates the notification registration workflow.

Figure 3: Notification registration workflow

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 16



▶  Notification registration workflow

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode API documentation on NotificationRegistrationDelegate for this
workflow.

1. The Customer Mobile Application calls the registerNotificationServicemethod of
the Notification SDK to obtain a notification identifier.

2. The Notification SDK contacts the Push Notification Service to obtain a noti-
fication identifier.

3. The Notification SDK returns to the Customer Mobile Application a OneSpan Noti-
fication Identifier, which is an abstraction of the previously retrieved notification
identifier. For more information, refer to the OneSpan Notification SDK Integration
Guide.

4. The Customer Mobile Application calls the startNotificationRegistrationmethod
of the Orchestration SDK to start the notification registration process.

5. The Orchestration SDK builds an orchestration command which includes the
OneSpan Notification Identifier and transmits it to the Mobile Application Server
using the onNotificationRegistrationCompletemethod.

6. The Customer Mobile Application transmits the orchestration command to the
Customer Application Server.

7. The Customer Application Server calls the orchestration-commandsWeb service of
the OneSpan Trusted Identity platform by providing the orchestration command.
A new orchestration command is returned as a result.

8. The Customer Application Server transmits the orchestration command to the
Customer Mobile Application as a response to the previous request.

9. The Customer Mobile Application calls the executemethod of the Orchestration
SDK to finalize the notification registration process.

10. The Orchestration SDK calls the onNotificationRegistrationSuccessmethod to
notify the Customer Mobile Application.

After a successful notification registration process, the OneSpan Trusted Identity plat-
form is able to send push notification messages to the Customer Mobile Application.

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 17



The Customer Mobile Application must integrate the other methods of the Noti-
fication SDK to properly receive and process the push notification messages sent by
the OneSpan Trusted Identity platform.

For more information about integrating this feature, see 5.3   Notification registration.

3.2.3  Remote authentication

With the remote authentication feature of the Orchestration SDK, the user can
authenticate to the Customer Website using the Customer Mobile Application, via an
authentication request initiated on the OneSpan Trusted Identity platform, and based
on the corresponding risk evaluation.

The remote authentication process is initiated using the Customer Website and eval-
uated for risk by OneSpan Trusted Identity platform before continuing with the Cus-
tomer Mobile Application.

The authentication request is embedded in an orchestration command and can be
transmitted via a push notification message initiated by OneSpan Trusted Identity
platform or by another communication channel handled by the Customer Website
(e.g. image scanning).

The authentication request contains the following parameters:

l A session identifier created by the Customer Application Server, which uniquely
identifies the authentication session.

l A request identifier created by the Customer Application Server, which uniquely
identifies the authentication request.

l An authentication method, which defines how the user must authenticate to
sign the authentication request (see 3.2.7   Authentication methods).

l (OPTIONAL) Data to display on the Customer Mobile Application to provide
authentication request information to the user; the user can choose to approve
or reject it.

The data to display is a string defined by the Customer Application Server, which
must be interpreted by the Customer Mobile Application.

Figure 4 illustrates the remote authentication workflow with the transmission of the
authentication request via a push notification message.

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 18



Figure 4: Remote authentication workflow

▶  Remote authentication workflow

1. The user initializes an authentication request via the Customer Website (e.g. for
login purposes), providing their user identifier.

2. The Customer Website transmits the user identifier and the Client Device Data
Collector (CDDC) browser data to the Customer Application Server.

3. The Customer Application Server calls the https://{tenant}.
{environment}.tid.onespan.cloud/v1/users/{userID@domain}/login endpoint
from the OneSpan Trusted Identity platform API by providing their user identifier,
a session identifier (dynamically generated and uniquely identifying the authen-
tication request), the received CDDC browser data, and, optionally, the data to dis-
play on the Customer Mobile Application.

4. The OneSpan Trusted Identity platform evaluates the risk related to the Web
browser used for the authentication request (based on multiple parameters

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 19

https://community.onespan.com/products/onespan-cloud-authentication/sandbox#/Users/loginUsingPOST
https://community.onespan.com/products/onespan-cloud-authentication/sandbox#/Users/loginUsingPOST


provided in the previous step and on existing parameters related to the user, e.g.
unknown country) and, in case of risk detection, initiates a step-up authen-
tication request on the Customer Mobile Application with a given authentication
method (see 3.2.7   Authentication methods).

Depending on the configuration defined in the OneSpan Trusted Identity plat-
form, multiple scenarios are possible:

l The authentication request can be transmitted via a push notification mes-
sage initiated by the OneSpan Trusted Identity platform and sent by the
Push Notification Service to the Customer Mobile Application. In this case, a
push notification message is sent to all mobile devices of the user where the
Customer Mobile Application is installed and activated.

l The authentication request can be transmitted by the Customer Application
Server via a different channel (e.g. display a Cronto image containing the
orchestration command related to the authentication request and scan it
with the Customer Mobile Application).

l The authentication request can be blocking or non-blocking.

The following steps describe a blocking scenario with the authentication request
transmitted via push notification.

5. The Push Notification Service sends a push notification message containing the
orchestration command related to the authentication request to the Customer
Mobile Application.

6. The Customer Mobile Application obtains the orchestration command contained
in the push notification message and calls the executemethod of the Orches-
tration SDK to perform the remote authentication.

7. The Orchestration SDK builds an orchestration command and transmits it to the
Customer Mobile Application using the onRemoteAuthenticationStepComplete
method.

8. The Customer Mobile Application transmits the orchestration command to the
Customer Application Server.

9. The Customer Application Server calls the orchestration-commandsWeb service of
the OneSpan Trusted Identity platform by providing the orchestration command.
A new orchestration command is returned as a result.

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 20



10. The Customer Application Server transmits the orchestration command to the
Customer Mobile Application as a response to the previous request.

11. The Customer Mobile Application calls the execute method of the Orchestration
SDK to continue the remote authentication process (only if the authentication
request is still pending).

12. The Orchestration SDK calls the onRemoteAuthenticationDisplayDatamethod to
transmit the data to display to the Customer Mobile Application (if data has been
defined in step 3).

13. The Customer Mobile Application displays a screen to the user containing the
data to display and two buttons to approve or reject the authentication request.

14. The user must approve or reject the authentication request, according to the dis-
played data.

15. Based on the user’s decision in the previous step, the Customer Mobile Applic-
ation calls the onDataApproved or onDataRejectedmethod of the Orchestration SDK.

16. In both cases, the Orchestration SDK prompts the user to authenticate by using
an authentication method defined by the OneSpan Trusted Identity platform,
based on the evaluated risk (see step 4).

17. The Orchestration SDK signs the authentication request, builds an orchestration
command, and transmits it to the Customer Mobile Application using the
onRemoteAuthenticationStepCompletemethod.

18. Repeat steps 8 to 11.

19. In case of validation by the OneSpan Trusted Identity platform, the Orchestration
SDK calls the onRemoteAuthenticationSuccessmethod to notify the Customer Mobile
Application.

20. The Customer Mobile Application notifies the user that the authentication
request has been successful and that they are about to be logged in to the Cus-
tomer Website.

21. The OneSpan Trusted Identity platform provides a response to the call to the
login Web service from step 3, indicating the success of the authentication
request.

22. The Customer Application Server transmits the success status to the Customer
Website. The user is now logged in to the Customer Website.

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 21



For more information about integrating this feature, see 5.4   Remote authentication.

3.2.4  Remote transaction

With the remote transaction feature of the Orchestration SDK, the user can perform a
transaction to the Customer Website using the Customer Mobile Application, via a
transaction request initiated on OneSpan Trusted Identity platform, and based on the
corresponding risk evaluation.

The remote transaction process is initiated using the Customer Website and eval-
uated for risk by the OneSpan Trusted Identity platform before continuing with the
Customer Mobile Application.

The transaction request is embedded in an orchestration command and can be trans-
mitted via a push notification message initiated by the OneSpan Trusted Identity plat-
form or by another communication channel handled by the Customer Website (e.g.
image scanning).

The authentication request contains the following parameters:

l A session identifier created by the Customer Application Server, which uniquely
identifies the transaction session.

l A request identifier created by the Customer Application Server, which uniquely
identifies the transaction request.

l An authentication method, which defines how the user must authenticate to be
able to sign the transaction request (see 3.2.7   Authentication methods).

l Data to display on the Customer Mobile Application to provide transaction
request information to the user; the user can choose to approve or reject it.

The data to display is a string defined by the Customer Application Server, which
must be interpreted by the Customer Mobile Application.

Figure 5 illustrates the remote transaction workflow with the transmission of the trans-
action request via a push notification message.

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 22



Figure 5: Remote transaction workflow

▶  Remote transaction workflow

1. The user initializes a transaction request via the Customer Website (e.g. for
money transfer purposes), providing their user identifier and the transaction data.

2. The Customer Website transmits the user identifier and the Client Device Data
Collector (CDDC) browser data to the Customer Application Server.

3. The Customer Application Server calls the https://{tenant}.
{environment}.tid.onespan.cloud/v1/users/
{userID@domain}/transactions/validate endpoint from the OneSpan Trusted
Identity platform API by providing their user identifier, a session identifier (dynam-
ically generated and uniquely identifying the authentication request), the
received CDDC browser data, and the data to display on the Customer Mobile
Application.

4. The OneSpan Trusted Identity platform evaluates the risk related to the Web
browser used for the transaction request (based on multiple parameters

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 23

https://community.onespan.com/products/onespan-cloud-authentication/sandbox#/Transactions/transactionValidationUsingPOST
https://community.onespan.com/products/onespan-cloud-authentication/sandbox#/Transactions/transactionValidationUsingPOST
https://community.onespan.com/products/onespan-cloud-authentication/sandbox#/Transactions/transactionValidationUsingPOST


provided in the previous step and on existing parameters related to the user, e.g.
amount too high) and, in case of risk detection, initiates a step-up transaction
request on the Customer Mobile Application with a given authentication method
(see 3.2.7   Authentication methods).

Depending on the configuration defined in the OneSpan Trusted Identity plat-
form, multiple scenarios are possible:

l The transaction request can be transmitted via a push notification message
initiated by the OneSpan Trusted Identity platform and sent by the Push
Notification Service to the Customer Mobile Application. In this case, a push
notification message is sent to all mobile devices of the user where the Cus-
tomer Mobile Application is installed and activated.

l The transaction request can be transmitted by the Customer Application
Server via a different channel (e.g. display a Cronto image containing the
orchestration command related to the transaction request and scan it with
the Customer Mobile Application).

l The transaction request can be blocking or non-blocking.

The following steps describe a blocking scenario with the transaction request
transmitted via push notification.

5. The Push Notification Service sends a push notification message containing the
orchestration command related to the transaction request to the Customer
Mobile Application.

6. The Customer Mobile Application obtains the orchestration command contained
in the push notification message and calls the executemethod of the Orches-
tration SDK to perform the remote authentication.

7. The Orchestration SDK builds an orchestration command and transmits it to the
Customer Mobile Application using the onRemoteTransactionStepCompletemethod.

8. The Customer Mobile Application transmits the orchestration command to the
Customer Application Server.

9. The Customer Application Server calls the orchestration-commandsWeb service of
the OneSpan Trusted Identity platform by providing the orchestration command.
A new orchestration command is returned as a result.

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 24



10. The Customer Application Server transmits the orchestration command to the
Customer Mobile Application as a response to the previous request.

11. The Customer Mobile Application calls the execute method of the Orchestration
SDK to continue the remote transaction process (only if the transaction request is
still pending).

12. The Orchestration SDK calls the onRemoteTransactionDisplayDatamethod to trans-
mit the data to display to the Customer Mobile Application.

13. The Customer Mobile Application displays a screen to the user containing the
data to display and two buttons to approve or reject the transaction request.

14. The user must approve or reject the transaction request, according to the dis-
played data.

15. Based on the user’s decision in the previous step, the Customer Mobile Applic-
ation calls the onDataApproved or onDataRejectedmethod of the Orchestration SDK.

16. In both cases, the Orchestration SDK prompts the user to authenticate by using
an authentication method defined by the OneSpan Trusted Identity platform,
based on the evaluated risk (see step 4).

17. The Orchestration SDK signs the transaction request, builds an orchestration
command, and transmits it to the Customer Mobile Application using the
onRemoteTransactionStepCompletemethod.

18. Repeat steps 8 to 11.

19. In case of validation by the OneSpan Trusted Identity platform, the Orchestration
SDK calls the onRemoteTransactionSuccessmethod to notify the Customer Mobile
Application.

20. The Customer Mobile Application notifies the user that the transaction request
has been validated.

21. The OneSpan Trusted Identity platform provides a response to the call to the
transactions/validateWeb service from step 3, indicating the success of the trans-
action request.

22. The Customer Application Server transmits the success status to the Customer
Website. The user is informed that the transaction has been validated on the Cus-
tomer Website.

For more information about integrating this feature, see 5.5   Remote transaction.

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 25



3.2.5  Local authentication

With the local authentication feature of the OneSpan Orchestration SDK, the user can
authenticate to the Customer Website using a one-time password (OTP) generated
via the Customer Mobile Application. The OTP can be transmitted manually by the
user, or remotely by the Customer Mobile Application. An authentication method
must be defined to authenticate the user before the OTP is generated. See 3.2.7  
Authentication methods for more information.

Figure 6 illustrates the local authentication workflow with a manual transmission of
the OTP.

Figure 6: Local authentication workflow

▶  Local authentication workflow

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode API documentation on LocalAuthenticationDelegate for this work-
flow.

1. The user initializes an authentication request via the Customer Mobile Applic-
ation (e.g. for login purposes), providing their user identifier.

2. The Customer Mobile Application calls the startLocalAuthenticationmethod of the
Orchestration SDK to perform the local authentication with a given

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 26



authentication method (see 3.2.7   Authentication methods for more inform-
ation).

3. The Orchestration SDK prompts the user to authenticate by using an authen-
tication method defined by the Customer Mobile Application.

4. In case of successful user authentication, the Orchestration SDK generates a one-
time password (OTP), and transmits it to the Customer Mobile Application using
the onLocalAuthenticationSuccessmethod.

5. The Customer Mobile Application displays the OTP to the user.

6. The user initializes an authentication request via the Customer Website (e.g. for
login purposes), by providing their user identifier and the generated OTP. This
request is transmitted to the Customer Application Server.

7. The Customer Application Server calls the login method of the OneSpan Trusted
Identity platform to verify the OTP.

8. The Customer Application Server provides a response to the Customer Website
by indicating the success of the authentication request.

9. The user is logged in to the Customer Website.

For more information about integrating this feature, see 5.6   Local authentication.

3.2.6  Local transaction

With the local transaction feature of the OneSpan Orchestration SDK, the user can do
a transaction to the Customer Website using a signature generated via the Customer
Mobile Application. The signature can be transmitted manually by the user or
remotely by the Customer Mobile Application. An authentication method must be
defined to authenticate the user before the signature is generated. See 3.2.7  
Authentication methods for more information.

Figure 7 illustrates the local transaction workflow with a manual transmission of the
signature.

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 27



Figure 7: Local transaction workflow

▶  Local transaction workflow

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode API documentation on LocalTransactionDelegate for this workflow.

1. The user initializes a transaction request via the Customer Mobile Application
(e.g. for login purposes), providing their user identifier and the transaction data.

2. The Customer Mobile Application calls the startLocalTransaction method of the
Orchestration SDK to perform the local authentication with a given authen-
tication method (see 3.2.7   Authentication methods for more information).

3. The Orchestration SDK prompts the user to authenticate, using an authen-
tication method defined by the Customer Mobile Application.

4. In case of successful user authentication, the Orchestration SDK generates a sig-
nature and transmits it to the Customer Mobile Application using the
onLocalTransactionSuccessmethod.

5. The Customer Mobile Application displays the signature to the user.

6. The user initializes a transaction request via the Customer Website (e.g. for
money transfer purposes) by providing their user identifier, the transaction data,

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 28



and the generated signature. This request is transmitted to the Customer Applic-
ation Server.

7. The Customer Application Server calls the transactions/validatemethod of the
OneSpan Trusted Identity platform to verify the signature of the transaction
request.

8. The Customer Application Server provides a response to the Customer Website,
indicating the success of the transaction request.

9. The user is informed that the transaction has been validated on the Customer
Website.

For more information about integrating this feature, see 5.7   Local transaction.

3.2.7  Authentication methods

User authentication requested by the Orchestration SDK can take place using one of
the following methods:

l No password

l Password

l Biometric recognition

In case of remote authentication or remote transaction the authentication method is
dynamically defined by the OneSpan Trusted Identity platform after risk evaluation. In
case of local authentication or transaction, the Customer Mobile Application must
define the authentication method.

If the requested authentication method is not supported by the mobile device (e.g.
biometric recognition requested but no biometric sensor on the device), the Orches-
tration SDK will fall back to authentication with password.

No password

If the authentication method is No password, no user action is required for the com-
pletion of the process.

Password

If the authentication method is password, the Orchestration SDK displays a virtual
keypad or call the password user authentication flow, and the user needs to enter

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 29



their password.

Figure 8: Authentication using a virtual keypad

For more information about this authentication method, refer to the Digipass
SDK Integration Guide.

NOTE: The texts displayed in the dialog and other graphical elements (i.e. text, col-
ors, icons) are customizable. For more information, see 4 Integrate the Orchestration
SDK.

Biometric

If the authentication method is biometric recognition, the Orchestration SDK displays
a dialog prompting the biometric scanner of the device. The Fallback button provided
by the Biometric Sensor SDK is not available in the biometric dialog.

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 30



Figure 9: Authentication using biometric recognition

For more information about this authentication method, refer to the OneSpan Biometric
Sensor SDK Integration Guide.

NOTE: The texts displayed in the dialog are customizable. All other graphical ele-
ments (i.e. text, colors, icons) cannot be customized. For more information, see 4
Integrate the Orchestration SDK.

External user authentication

Introduction

It is possible to override the user authentication. Instead of displaying the integrated
Orchestration user authentication, the Orchestration SDK will call a specific callback
to inform the Customer Mobile Application that such an authentication is required. In
this call, the type of authentication will be indicated. For now only password is avail-
able. Below you will find some best practices for this kind of authentication.

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 31



NOTE: If an activation was done using an external password, it will have to be
provided to change the password.

NOTE: The input for the PASSWORD authentication is not stored by the Orches-
tration SDK. This should never be store in the Customer Mobile Application.

Usage

Figure 10: External user authentication workflow

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 32



▶  User authentication flow

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode API documentation on UserAuthenticationDelegate for this workflow.

1. The Customer Mobile Application registers a UserAuthenticationCallback and the
different user authentication methods that will be overridden.

2. The Orchestration SDK informs the Customer Mobile Application, that a user
authentication is required. The following information will be provided:

l Type of user authentication.

l A Boolean that indicates if this is for enrollment purposes.

l A callback to send back the user input.

3. The Customer Mobile Application presents the requested authentication to the
user.

4. The user identifies themselves via the Customer Mobile Application.

5. The Customer Mobile Application sends the user input back to the Orchestration
SDK.

6. (OPTIONAL) The Orchestration SDK validates the provided input. For example the
password should respect the weak password rules of Digipass SDK.

7. (OPTIONAL) The user input can be used to derive the secret stored in the Digi-
pass SDK. , This way, it can only be used when the user provides the same input.

Password input best practices

Mobile apps often handle sensitive information in the form of passwords. The fol-
lowing recommendations outline the security precautions that should be taken when
entering passwords into mobile apps.

Build an in-house keypad (do not use one of the inbuilt keyboards of
the device)

Using a custom keypad that is part of the app, prevents attacks using malicious
keyboards or generic keyboards sniffers. Third-party keyboards may hide mali-

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 33



cious functionalities and can be used to steal passwords. For this reason, they
should not be used for password input.

When using an in-house keypad, consider randomizing the position of
the keys in the keypad

This security measure will make event grabbing attacks less likely.

Do not allow copying of the password from its input field

If the password is entered in an input field, make sure it cannot be copied to the
clipboard.

Use password text fields that hide the value of the password

If the password is entered in an input field, ensure that the password is masked
(e.g., screen displays this format “****”). This security measure prevents attackers
from reading the password over the shoulder or from capturing the password via
screenshot.

Avoid the use of WebViews for password input

WebViews present additional security risks and should not be used for the input
of sensitive information.

Clear passwords in memory as soon as they are no longer needed

Passwords should reside in memory as short as possible.

This means that the object used for storing the password in memory should be
clearable (e.g., in Java passwords should be stored in Byte arrays instead of
Strings). Once the password is no longer required, the object should be actively
cleared (e.g., by zeroing the bytes in the array).

Validate the input before storing it in the password object in memory

In case one of the inbuilt device keyboards is used (and not an in-house keypad),
the input from the keyboards should be sanitized before accepting it. Note that
this is not the same as checking against a password policy. This is just to ensure
that no invalid characters are entered in the input field.

Validate the password output before sending it to a downstream SDK
or API call

Although it is the responsibility of the downstream SDK or API to sanitize its
inputs, it is a good practice to also sanitize the output before using it in and SDK

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 34



or API call. For example, the password could be validated against a list of accept-
able characters and a maximum length.

3.2.8  Change password

The Orchestration SDK provides facilities for the user to change their password. The
password was defined during the activation process.

The Orchestration SDK displays a virtual keypad or calls the password user authen-
tication flow, where the user can enter the old password, and then define and confirm
the new password. If an external user authentication by password has been con-
figured the “User Authentication Flow” will be called.

A network request is required to check whether the entered old password is valid: an
OTP is generated with the old password and validated on the Customer Application
Server.

Figure 11 illustrates the change password workflow.

Figure 11: Change password workflow

▶  Change password workflow

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode API documentation on ChangePasswordDelegate for this workflow.

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 35



1. The user initiates the change password process using the Customer Mobile
Application.

2. The Customer Mobile Application calls the startChangePasswordmethod of the
Orchestration SDK to change the user’s password.

3. The Orchestration SDK displays the virtual keypad or calls the password user
authentication flow, where the user can enter their old password.

4. The Orchestration SDK generates a one-time password (OTP) with the old pass-
word, builds an orchestration command, and transmits it to the Customer Mobile
Application using the onChangePasswordStepCompletemethod.

5. The Customer Mobile Application transmits the orchestration command to the
Customer Application Server.

6. The Customer Application Server calls the orchestration-commandsWeb service of
the OneSpan Trusted Identity platform by providing the orchestration command.
A new orchestration command is returned as a result.

7. The Customer Application Server transmits the orchestration command to the
Customer Mobile Application as a response to the previous request.

8. The Customer Mobile Application calls the execute method of the Orchestration
SDK to continue the change password process (only if the OTP validation suc-
ceeded).

9. In case of successful user authentication, the Orchestration SDK displays the vir-
tual keypad or calls the password user authentication flow, where the user can
enter their new password.

10. If the password is not weak, the Orchestration SDK displays the virtual keypad or
calls the password user authentication flow, where the user can confirm their
new password.

11. The Orchestration SDK calls the onChangePasswordSuccessmethod to notify the Cus-
tomer Mobile Application of the changed password.

12. The Customer Mobile Application notifies the user that the password has been
successfully changed.

For more information about integrating this feature, see 5.9   Change password.

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 36



3.2.9  Device data collection

The orchestration commands sent by the Orchestration SDK contain device data col-
lected periodically.

This data is used for risk evaluation in the OneSpan Trusted Identity platform and pro-
tected via the Secure Channel feature to ensure confidentiality, integrity, and non-
repudiation. For more information about the collected data, refer to the Client Device
Data Collector SDKIntegration Guide.

Collection of device data is started automatically when the Orchestration SDK is ini-
tialized, with the following default collection parameters:

l Refresh interval: 60 seconds

l Collection enabled for geolocation, Bluetooth, and Wi-Fi

Special permissions may be required (see 4.1   Integrating OneSpan Orchestration
SDK with Android ).

Data that cannot be collected automatically must be populated during the integ-
ration. For more information about integrating this feature, see 5.10   Device data col-
lection.

3.2.10  Multi-user management

The Orchestration SDK provides facilities to activate multiple users in the Customer
Mobile Application. To achieve this, each activation process must use its own user iden-
tifier.

NOTE: Each user has their own password; the password is not shared by all users.

Notification registration must be performed for each activated user.

The Orchestration SDK provides methods to check whether a user is activated, to
obtain user information, and to delete a user.

For more information about integrating this feature, see 5.11   Multi-user man-
agement.

3 Using the Orchestration SDK
Orchestration SDK Integration Guide 37



4Integrate the Orchestration SDK

This section provides information on exposed APIs and instructions to integrate
the Orchestration SDK with the supported platforms.

4.1  Integrating OneSpan Orchestration SDK with Android 39

4.2  Integrating OneSpan Orchestration SDK with iOS 42

4 Integrate the Orchestration SDK
Orchestration SDK Integration Guide 38



4.1  Integrating OneSpan Orchestration SDK with
Android

▶  To use OneSpan Orchestration SDK in your Android project

1. Configure your Maven repository using dependencies from the Bin/maven dir-
ectory.

2. Add the following dependencies to the dependencies configuration in the
build.gradle file :

dependencies {
...
  implementation 'androidx.biometric:biometric:1.1.0'
  implementation 'com.google.firebase:firebase-core:21.1.1'
  implementation 'com.google.firebase:firebase-messaging:23.1.2'
  implementation 'androidx.appcompat:appcompat:1.6.1'
  implementation 'androidx.legacy:legacy-support-v4:1.0.0'
  implementation 'androidx.lifecycle:lifecycle-runtime:2.6.0'
  implementation 'com.google.android.material:material:1.8.0'
  implementation 'com.google.android.gms:play-services-location:21.0.1'
  implementation 'com.esotericsoftware:kryo:5.3.0'
  implementation 'org.bouncycastle:bcprov-jdk15on:1.70
  implementation "org.jetbrains.kotlin:kotlin-stdlib-jdk7:1.7.0"
...
}

3. Set the correct permissions for client device data collection in the
AndroidManifest.xml file:

l Geolocation/Bluetooth/Wi-Fi: ACCESS_COARSE_LOCATION or ACCESS_
FINE_LOCATION

l Wi-Fi: ACCESS_WIFI_STATE, ACCESS_NETWORK_STATE, and CHANGE_WIFI_
STATE

l Bluetooth: BLUETOOTH and BLUETOOTH_ADMIN for Android lower than 12

4 Integrate the Orchestration SDK
Orchestration SDK Integration Guide 39



l Bluetooth: BLUETOOTH_CONNECT and BLUETOOTH_SCAN for Android 12
and later

l Sampling rate: HIGH_SAMPLING_RATE_SENSORS for Android 12 and later

The Orchestration SDK provides facilities for biometric recognition on Android 6.0
devices (and later) with a biometric scanner.

NOTE: If you use the Mobile Application Shielding obfuscation feature, you must
add the following rule to the Mobile Application Shielding obfuscation configuration
file:

untouchable com.esotericsoftware.kryo.*;

TIP: For more specific integration details, refer to the code sample that is provided
with the Orchestration SDK product package.

NOTE: The Orchestration SDK requires the following permissions:
l USE_BIOMETRIC for biometric recognition on Android 6.0 devices (and later)
with the available biometric authentication method.

l VIBRATE for password input.

These permissions are listed in the AndroidManifest.xml file contained in
OrchestrationSDK.aar. This file is included in the maven repository, therefore the per-
missions do not need to be duplicated in the AndroidManifest.xml file of the Customer
Mobile Application.

NOTE: As of Android 13, to receive notifications in the Orchestration SDK you have to
manually handle the new runtime permission POST_NOTIFICATIONS. For more inform-
ation, refer to developer.android.com.

NOTE: The Orchestration SDK library size has increased due to 64-bit support. To
reduce the binary size, it is possible to generate one app per architecture. For more

4 Integrate the Orchestration SDK
Orchestration SDK Integration Guide 40

https://developer.android.com/about/versions/13/changes/notification-permission


details refer to Build Multiple APKs. The orchestration sample build.gradle contains a
commented-out section to generate split APKs.

CAUTION: At this time, it is not possible to use the Android Allow Backup feature.
There is a known issue that excludes storage files from the backup which are critical
for the Orchestration SDK to work properly. We strongly recommend disabling the
Allow Backup option.

You are now ready to use the Orchestration SDK.

4 Integrate the Orchestration SDK
Orchestration SDK Integration Guide 41

https://developer.android.com/studio/build/configure-apk-splits


4.2  Integrating OneSpan Orchestration SDK with
iOS

▶  Using OneSpan Orchestration SDK in your iOS project

1. Link MSSOrchestration.xcframework to your Xcode project.

2. Link MSSDeviceBinding.xcframework to your Xcode project.

3. Link MSSNotificationClient.xcframework to your Xcode project.

4. Link MSSOrchestrationResources.bundle to your Xcode project as standard resource
file.

5. Add the following keys and their description to your plist:

l NSCameraUsageDescription

l NSFaceIDUsageDescription

l NSLocationWhenInUseUsageDescription

l NSBluetoothPeripheralUsageDescription

l NSBluetoothAlwaysUsageDescription

l NSLocalNetworkUsageDescription (if applicable)

CAUTION: As of release 5.6.2, it is mandatory to use the AppPrivate access group for
activated users when creating an orchestration. The access group setup is similar to
the one introduced in the Device Binding SDK. For more information, refer to the
technical documentation included in the Orchestration SDK package. For a detailed
tutorial on how to configure the project and use the proper access group, see the
MSSDeviceBinding.doccarchive file from the iOS/Documentation folder of the Device Bind-
ing SDK package.

NOTE: The NSLocalNetworkUsageDescription description has to be set only if your applic-
ation (or specific test target) actually accesses the server in a local network. When this

4 Integrate the Orchestration SDK
Orchestration SDK Integration Guide 42



applies, set waitsForConnectivity to true. With this URLSessionConfiguration used in the
communication waits for user's interaction, displaying a permission pop-up.

TIP: For more specific integration details, refer to the code sample that is provided
with the Orchestration SDK product package.

You are now ready to use the Orchestration SDK.

4 Integrate the Orchestration SDK
Orchestration SDK Integration Guide 43



5Exposed APIs in the Orchestration SDK

This section provides information on exposed APIs and instructions to integrate the
Orchestration SDK with the supported platforms.

5.1  Core 45

5.2  Activation 48

5.3  Notification registration 49

5.4  Remote authentication 50

5.5  Remote transaction 51

5.6  Local authentication 52

5.7  Local transaction 54

5.8  Authentication method 56

5.9  Change password 62

5.10  Device data collection 63

5.11  Multi-user management 65

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 44



5.1  Core

NOTE: The Orchestration SDK contains a native interface for Swift. This interface
provides native Swift methods and objects. It offers the same logical flow as the
Objective-C interface but provides better signatures and more data on orchestrator
instances. The Swift sample app delivered with the Orchestration SDK package uses
the relevant Swift APIs, and the README.md file delivered with the sample app contains
examples and code snippets.

5.1.1  Entry point

The Orchestrator class is the entry point of the Orchestration SDK. It manages the
flows related to the features of the SDK by providing methods to start these flows (e.g.
startActivation) and to interpret the orchestration commands received from the
OneSpan Trusted Identity platform (via the executemethod).

An Orchestrator object must be created by using the dedicated Orchestrator.Builder
class.

The following parameters must be defined when building an Orchestrator object:

l Hardcoded salts, which will be used for weak diversification with certain security
features (e.g. device binding, secure storage). These salts will be derived by the
Orchestration SDK to complicate reverse-engineering attacks.

l Default domain, as configured in the OneSpan Trusted Identity platform. If the
Customer Mobile Application must manage multiple domains, the default
domain can be dynamically overwritten for each action (e.g. startActivation).

l Android only: A Context object is required for using the native features of the
mobile device (e.g. data storage).

l Android only: An ActivityProvider object is required to properly display and
handle the Biometric and PinPad dialog.

l A CDDCParams object, which will define the parameters for device data collection.
These parameters are optional; default parameters are hardcoded in the Orches-
tration SDK. For more information, see 5.10   Device data collection.

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 45



l An OrchestrationErrorCallback object, which will be used to throw errors from the
Orchestration SDK to the Customer Mobile Application. For more information,
see 5.1.2   Error and warning management.

l An OrchestrationWarningCallback object, which will be used to throw warnings
from the Orchestration SDK to the Customer Mobile Application. For more
information, see 5.1.2   Error and warning management.

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode API documentation on CDDCParameters, OrchestrationErrorDelegate
and OrchestrationWarningDelegate.

5.1.2  Error and warning management

Error

Errors are thrown via the onOrchestrationErrormethod of the
OrchestrationErrorCallback object. The OrchestrationError object provides error codes
and the cause of the error. The possible errors are listed in the OrchestrationErrorCodes
class.

Warning

Warnings are thrown via the onOrchestrationWarningmethod of the
OrchestrationWarningCallback object. The OrchestrationWarning object provides warning
codes and the cause of the warning, as well as a list of all possible warning codes. The
possible errors are listed in the OrchestrationWarningCodes class.

NOTE: New APIs are created for Swift users of iOS SDK. Please consult Xcode API
documentation provided on OrchestrationErrorDelegate and
OrchestrationWarningDelegate. All possible errors are listed under OrchestrationError
enum and all possible warnings are listed under OrchestrationWarning enum.

5.1.3  Callback mechanism

The Orchestration SDK uses asynchronous mechanisms to execute the flows related
to the features of the SDK.

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 46



Callback methods are used to notify the Customer Mobile Application when an action
related to a specific flow is finished (e.g. the activation has succeeded) or requires
action of the Customer Mobile Application (e.g. perform a network request with the
given orchestration command).

NOTE: The callback methods are called from the UI thread on Android, and from the
main thread on iOS.

The Customer Mobile Application must provide an implementation of the dedicated
callback methods to receive these notifications.

Callback registration is required for the following features:

l Activation

l Remote authentication

l Remote transaction

l Local authentication

l Local transaction

l Change password

l Notification registration

5.1.4  Application life cycle

On Android, to properly display UI components such as the virtual keypad, the
Orchestrator object is life-cycle-aware.

For the Orchestrator object to work properly, an instance of the ActivityProvidor is
required. This returns weak references to the current Activity object.

NOTE: This requirement does not apply to applications on iOS.

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 47



5.2  Activation

NOTE: New APIs are created for Swift users of the iOS SDK. For more details, refer to
the Xcode API documentation on OnlineActivationParameters and
OnlineActivationDelegate.

The activation process must be initiated by calling the startActivationmethod of the
Orchestrator object.

An OnlineActivationParams object must be provided as an input parameter of the
startActivationmethod, and this OnlineActivationParams object must be initiated with
the following parameters:

l User identifier. A string which uniquely identifies the user on the OneSpan Trus-
ted Identity platform.

l Activation password. Secret data shared between the Customer Application
Server and the user.

l (OPTIONAL) Cryptographic Application Index. The index of the cryptographic
application that must be used to sign the instance activation message. The
default value is 1.

l An object implementing the OnlineActivationCallback interface.

The OnlineActivationCallback interface is used by the Orchestration SDK to interact
with the Customer Mobile Application during the activation process. It exposes the fol-
lowing methods:

l onActivationStepComplete. Called upon activation step success, the provided com-
mand must be sent to the server.

l onActivationSuccess. Called upon activation process success.

l onActivationInputError. Called upon activation process error due to incorrect user
input. The possible errors are listed in the OrchestrationErrorCodes class.

l onActivationAborted. Called when the activation process is canceled.

For more information about this feature, see3.2.1   Activation

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 48



5.3  Notification registration

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode API documentation on NotificationRegistrationParameters and
NotificationRegistrationDelegate.

The Customer Mobile Application can initialize a notification registration process by
calling the startNotificationRegistrationmethod of the Orchestrator object.

A NotificationRegistrationParams object must be provided as an input parameter of the
startNotificationRegistrationmethod; this NotificationRegistrationParams object must
be initiated with the following parameters:

l User identifier. A string which uniquely identifies the user on the OneSpan Trus-
ted Identity platform.

l Notification identifier. Uniquely identifies an app on a given device in the context
of push-notification-based authentication. Defined by the notification service (i.e.
Apple or Google).

l An object implementing the NotificationRegistrationCallback interface.

The NotificationRegistrationCallback interface is used by the Orchestration SDK to
interact with the Customer Mobile Application during the notification registration pro-
cess. It exposes the following methods:

l onNotificationRegistrationStepComplete: Called when a step of the notification regis-
tration process is complete. The provided orchestration command must be sent
to the server.

l onNotificationRegistrationSuccess: Called upon successful notification registration.

For more information about this feature, see 3.2.2   Notification registration.

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 49



5.4  Remote authentication

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode API documentation on RemoteAuthenticationDelegate.

The Customer Mobile Application must call the setRemoteAuthenticationCallback
method and provide an implementation of the RemoteAuthenticationCallback interface
to process a remote authentication flow.

The RemoteAuthenticationCallback interface is used by the Orchestration SDK to interact
with the Customer Mobile Application during the remote authentication process. It
exposes the following methods:

l onRemoteAuthenticationDisplayData. Called when the Orchestration SDK needs the
RemoteAuthenticationCallback interface implementation to display data for
approval by the user.

l The Customer Mobile Application must call the onDataApprovedmethod of the
DisplayDataCaller object if the user approves the authentication request.

l The Customer Mobile Application must call the onDataRejectedmethod of the
DisplayDataCaller object if the user rejects the authentication request.

l onRemoteAuthenticationStepComplete. Called when a step of the remote authen-
tication process is complete. The provided orchestration command must be sent
to the server.

l onRemoteAuthenticationSuccess. Called upon remote authentication success. It can
also be called to notify the Customer Mobile Application that the rejected request
has been taken into account by the Customer Application Server.

l onRemoteAuthenticationSessionOutdated. Called when the remote authentication ses-
sion is outdated (expired, already approved, or already rejected).

l onRemoteAuthenticationAborted. Called when remote authentication is canceled.

l onRemoteAuthenticationPasswordError. Called upon remote authentication process
error due to incorrect user input. The possible errors are listed in the
OrchestrationErrorCodes class.

For more information about this feature, see 3.2.3   Remote authentication.

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 50



5.5  Remote transaction

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode API documentation on RemoteTransactionDelegate.

The Customer Mobile Application must call the setRemoteTransactionCallbackmethod
and provide an implementation of the RemoteTransactionCallback interface to process a
remote transaction flow.

The RemoteTransactionCallback interface is used by the Orchestration SDK to interact
with the Customer Mobile Application during the remote transaction process. It
exposes the following methods:

l onRemoteTransactionDisplayData. Called when the Orchestration SDK needs the
RemoteTransactionCallback interface implementation to display data for approval
by the user.

l The Customer Mobile Application must call the onDataApprovedmethod of the
DisplayDataCaller object if the user approves the transaction request.

l The Customer Mobile Application must call the onDataRejectedmethod of the
DisplayDataCaller object if the user rejects the transaction request.

l onRemoteTransactionStepComplete. Called when a step of the remote transaction pro-
cess is complete. The provided orchestration command must be sent to the
server.

l onRemoteTransactionSuccess. Called upon remote transaction success. It can also be
called to notify the Customer Mobile Application that the rejected request has
been taken into account by the Customer Application Server.

l onRemoteTransactionSessionOutdated. Called when the remote transaction session is
outdated (expired, already approved, or already rejected).

l onRemoteTransactionAborted. Called when remote transaction is canceled.

l onRemoteTransactionPasswordError. Called upon remote transaction process error
due to incorrect user input. The possible errors are listed in the
OrchestrationErrorCodes class.

For more information about this feature, see 3.2.4   Remote transaction.

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 51



5.6  Local authentication

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode API documentation on LocalAuthenticationParameters and
LocalAuthenticationDelegate.

The Customer Mobile Application can initialize a local authentication process by call-
ing the startLocalAuthenticationmethod of the Orchestrator object.

A LocalAuthenticationParams object must be provided as an input parameter of the
startLocalAuthenticationmethod; this LocalAuthenticationParams object must be ini-
tiated with the following parameters:

l User identifier. A string which uniquely identifies the user on the OneSpan Trus-
ted Identity platform.

l Cryptographic Application Index. The index of the cryptographic application
which must be used to generate the OTP.

l (OPTIONAL) Challenge. A string which can be used to diversify the OTP gen-
eration. If the crypto-app index is related to a Challenge/Response application, a
challenge parameter must be provided.

l Protection Type. The authentication method which must be used to authenticate
the user before the OTP is generated (see 3.2.7   Authentication methods for
more information).

l An object implementing the LocalAuthenticationCallback interface.

The LocalAuthenticationCallback interface is used by the Orchestration SDK to interact
with the Customer Mobile Application during the local authentication process. It
exposes the following methods:

l onLocalAuthenticationSuccess: Called upon local authentication success. It returns
the generated OTP and, depending on the Digipass configuration, a host code
(used to authenticate the authentication server on which the OTP has been sub-
mitted).

l onLocalAuthenticationAborted: Called when local authentication is canceled.

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 52



l onLocalAuthenticationPasswordError: Called upon a local authentication process
error due to incorrect user input. The possible errors are listed in the
OrchestrationErrorCodes class.

For more information about this feature, see 3.2.5   Local authentication.

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 53



5.7  Local transaction

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode API documentation on LocalTransactionParameters and
LocalTransactionDelegate.

The Customer Mobile Application can initialize a local transaction process by calling
the startLocalTransactionmethod of the Orchestrator object.

A LocalTransactionParams object must be provided as an input parameter of the
startLocalTransactionmethod; this LocalTransactionParams object must be initiated with
the following parameters:

l User identifier. A string which uniquely identifies the user on the OneSpan Trus-
ted Identity platform.

l Cryptographic Application Index. The index of the cryptographic application
which must be used to generate the signature.

l Data Fields. The transaction data to sign. A list of max. 8 data fields; the length of
the data fields is limited to 16 characters.

l Protection Type. The authentication method which must be used to authenticate
the user before signing the transaction (see 3.2.7   Authentication methods for
more information).

The LocalTransactionCallback interface is used by the Orchestration SDK to interact
with the Customer Mobile Application during the local transaction process. It exposes
the following methods:

l onLocalTransactionSuccess. Called upon local transaction success. It returns the
generated signature and, depending on the Digipass configuration, a host code
(used to authenticate the authentication server on which the signature has been
submitted).

l onLocalTransactionAborted. Called when local transaction is cancelled.

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 54



l onLocalTransactionPasswordError. Called upon a local transaction process error due
to incorrect user input. The possible errors are listed in the OrchestrationErrorCodes
class.

For more information about this feature, see 3.2.6   Local transaction.

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 55



5.8  Authentication method

5.8.1  Customization of integrated authentication

The texts related to the authentication methods can be customized using the keys lis-
ted in Table 1 in the configuration files of the Customer Mobile Application (i.e.
string.xml for Android and Localizable.strings for iOS).

Key Default value Description

orch_pinpad_text_
registration

Choose a password Registration text

orch_pinpad_text_
registration_confirm

Confirm your password Confirmation text dur-
ing registration

orch_pinpad_text_
authentication

Enter your password Text for authentication

orch_pinpad_text_
update

Choose a new password Text for updating the
password

orch_pinpad_text_
update_confirmation

Confirm new password Text for confirming the
updated password

orch_pinpad_error_
weak

The password is too simple. Choose a more
complex password.

Weak password error

orch_pinpad_error_
confirmation

The password confirmation has failed. Make
sure you entered the same password twice.

Password confirmation
error

Table 1: Virtual keypad - Text customization keys

Key Default value

orch_biometric_title Biometric Authentication

orch_biometric_description Please, use your Biometric scanner to authenticate

orch_biometric_failed Authentication failed

orch_biometric_btn_cancel Cancel

Table 2: Biometric recognition

The color can be customized using the keys listed in Table 3 in the configuration files
of the Customer Mobile Application (i.e. color.xml for Android and Localizable.strings
for iOS).

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 56



Key Default value Description

orch_pinpad_background_color #ffffffff Background color

orch_pinpad_arrow_color #ffffc107 Delete arrow color

orch_pinpad_input_color #ffffc107 Secure input color

orch_pinpad_text_color #ff000000 Title color

orch_pinpad_text_error_color #ffff0000 Text error color

orch_pinpad_digit_color #ff000000 Color of the Virtual keypad digits

Table 3: Virtual keypad - Color customization keys

The font size can be customized using the keys listed in Table 4 in the configuration
files of the Customer Mobile Application (i.e. dimens.xml for Android and
Localizable.strings for iOS).

Key
Android Default
value

iOS Default
value

Description

orch_pinpad_input_
empty_size

N/A 15 Secure input inactive font size,
only on iOS

orch_pinpad_input_
full_size

N/A 20 Secure input active font size,
only on iOS

orch_pinpad_title_
text_size

20sp 25 Title font size

orch_pinpad_text_
error_size

18sp 16 Text error font size

orch_pinpad_digit_
text_size

40sp 50 Font size of the Virtual keypad
digits

Table 4: Virtual keypad - Font size customization keys

The other graphical elements are defined differently on iOS and Android.
For iOS, you can define these by customizing the keys listed in Table 5 in the con-
figuration files of the Customer Mobile Application (i.e. Localizable.strings).

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 57



Key Default value Description

orch_pinpad_background_image Background image (can be
empty)

orch_pinpad_background_mode fit Background image display mode.

Possible values:

l center

l fit

l stretch

orch_pinpad_arrow_image backspace Delete arrow image

orch_pinpad_input_font_name Secure input font (System if
empty)

orch_pinpad_input_empty_
character

□ Secure input empty character

orch_pinpad_input_full_
character

■ Secure input full character

orch_pinpad_text_font_name HelveticaNeue-Light Title font name

orch_pinpad_text_error_font_
name

HelveticaNeue Text error font name

orch_pinpad_digit_font_name HelveticaNeue-
UltraLight

Font name of the Virtual keypad
digits

Table 5: Virtual keypad - Graphical elements customization keys for iOS

For Android, the font can be customized by overriding the styles listed in Table 6 in
the configuration files of the Customer Mobile Application (i.e. styles.xml).

Style Default font family name Description

PinpadTitleFont sans-serif-thin Title font style

PinpadErrorFont sans-serif-thin Text error font style

PinpadDigitFont sans-serif-thin Font style of the Virtual keypad digits

Table 6: Virtual keypad - Font customization for Android

For Android, the secure input and the backspace arrow can be customized by over-
riding the drawable elements listed in Table 7 in the configuration files of the Cus-
tomer Mobile Application (i.e. in the drawable folder).

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 58



Drawable Description

orch_pinpad_backspace.xml Delete arrow drawable

orch_pinpad_clue_activated.xml Secure input full drawable

orch_pinpad_clue_
deactivated.xml

Secure input empty drawable

orch_pinpad_clue_
highlighted.xml

Secure input highlighted drawable

orch_pinpad_background_
image.xml

Virtual keypad background drawable, can be overridden by an
image.

Table 7: Virtual keypad - Drawable element customization for Android

For Android, the Virtual keypad background can be customized in multiple ways:

l by changing its background color, as indicated in the Virtual keypad color table

l by overriding its background image, as indicated in the Virtual keypad drawable
table

l by overriding its layout in the configuration files of the Customer Mobile Applic-
ation (i.e. in the layout folder)

Layout Description

orch_pinpad_
background_layout.xml

Layout of the Virtual keypad background; the background image can
be changed by using the android:src key.

Table 8: Virtual keypad - Background customization for Android

Dark mode support for iOS

In the iOS sample, a file named PinPad.storyboard is available.

This file makes it possible to customize fonts, icon and colors. The Dark mode is man-
aged by declaring named colors in the assets catalog (Assets.xcassets) or by using sys-
tem colors.

The storyboard will take over the string customization as soon as it is added to the
integrating project.

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 59



NOTE: This storyboard contains a lot of links to outlets defined inside the Orches-
trationSDK. These links can't be restored if they are removed.

NOTE: The error you see in the storyboard is perfectly normal and doesn't make the
compilation fail.

5.8.2  External user authentication

We also provide an option to override the user authentication. For example instead of
displaying the integrated Virtual keypad, you can display your own password authen-
tication.

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 60



The Customer Mobile Application must call the setUserAuthenticationCallbackmethod
and provide:

l an implementation of the UserAuthenticationCallback interface that will be called
when an overridden user authentication is required.

l a list of UserAuthenticationType containing all the user authentication you want to
override. For now only the UserAuthenticationType.PASSWORD can be overridden.

The UserAuthenticationCallback interface is used by the Orchestration SDK Client to
interact with the Customer Mobile Application during the process of overridding the
user authentication. It exposes the following methods:

l onUserAuthenticationRequired. Called when the Orchestration SDK Client needs the
UserAuthenticationCallback object to authenticate the end user.

l The Customer Mobile Application must call the
onUserAuthenticationInputSuccessmethod of the
UserAuthenticationInputCallback object if the user is authenticated. An input
from the user is expected, it may be used to derive the secret store in the
device.

l The Customer Mobile Application must call the
onUserAuthenticationInputAbortedmethod of the
UserAuthenticationInputCallback object if the user aborts the user authen-
tification.

l onUserAuthenticationInputError. This is called when the Orchestration SDK Client
needs to inform the UserAuthenticationCallbackmethod that there is an issue with
the input.

NOTE: For iOS, different names are used: UserAuthenticationCallback is called
UserAuthenticationDelegate, and UserAuthenticationInputCallback is called
UserAuthenticationInputDelegate.

NOTE: For more information about this feature, see 3.2.7   Authentication methods.

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 61



5.9  Change password

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode API documentation on ChangePasswordParameters and
ChangePasswordDelegate.

The Customer Mobile Application can initialize a change password process by calling
the startChangePasswordmethod of the Orchestrator object.

A ChangePasswordParams object must be provided as an input parameter of the
startChangePasswordmethod.

The ChangePasswordParams object must be initiated with the following parameters:

l User identifier. A string which uniquely identifies the user on the OneSpan Trus-
ted Identity platform.

l Cryptographic Application Index: The index of the cryptographic application
which must be used to generate the OTP.

l An object implementing the ChangePasswordCallback interface.

The ChangePasswordCallback interface is used by the Orchestration SDK to interact with
the Customer Mobile Application during the change password process. It exposes the
following methods:

l onChangePasswordStepComplete. Called when a step of the change password process
is complete. The provided orchestration command must be sent to the server.

l onChangePasswordSuccess. Called upon successful change of the password.

l onChangePasswordAborted. Called when changing the password is cancelled.

l onChangePasswordInputError. Called upon an error in the change password process
due to incorrect user input. The possible errors are listed in the
OrchestrationErrorCodes class.

For more information about this feature, see 3.2.8   Change password.

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 62



5.10  Device data collection

NOTE: New APIs are created for Swift users of the iOS SDK. For more information,
refer to the Xcode API documentation on CDDCDataFeeder and CDDCMessageParameters.

Device data collection can be optionally configured with a CDDCParams object. The fol-
lowing parameters can be configured:

l Refresh interval. The interval (in seconds) at which device data is refreshed.
Default: 60 seconds.

l Optional device data. The collection of certain device data types (i.e. geolocation,
Bluetooth, and Wi-Fi) requires specific permissions. By default, these data types
are not collected. For more information about required permissions on Android,
see 4.1   Integrating OneSpan Orchestration SDK with Android.

Most of the device data is collected automatically by the Orchestration SDK. Device
data which cannot be collected automatically can be provided by the Customer
Mobile Application, by using the CDDCDataFeeder object.

The CDDCDataFeeder object must be retrieved using the getCDDCDataFeedermethod of the
Orchestrator object.

The Orchestrator object provides the getCDDCMessagemethod to transmit the collected
device data to the OneSpan Trusted Identity platform without using an orchestration
command.

A CDDCMessageParams object must be provided as an input parameter of the
getCDDCMessagemethod.

The CDDCMessageParams object must be initiated with the following parameters:

l User identifier. A string which uniquely identifies the user on the OneSpan Trus-
ted Identity platform.

l Encrypted. Indicates whether the data must be encrypted.

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 63



l Event Name. A string representing an event related to the collected data. For
more information, refer to the Client Device Data Collector SDK Integration Guide
(part of the OneSpan Risk Analytics package).

l Application Data. A JSON string representing additional data to add in the CDDC
message. For more information, refer to the Client Device Data Collector SDK
Integration Guide (part of the OneSpan Risk Analytics package).

For more information about this feature, see 3.2.9   Device data collection.

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 64



5.11  Multi-user management
The UserManager object provides the following methods:

l getUsers. Lists the activated users.

l isUserActivated. Checks whether the provided user identifier corresponds to an
activated user.

l getUserInformation. Retrieves the information related to a specific user.

l deleteUser. Deactivates a specified user.

The UserManager object must be retrieved using the getUserManagermethod of the
Orchestrator object.

For more information about this feature, see 3.2.10   Multi-user management.

5 Exposed APIs in the Orchestration SDK
Orchestration SDK Integration Guide 65



Index

A
activation
exposed APIs 48
overview 13
workflow 13

Android
supported versions 10

authentication method
biometric recognition 30
exposed APIs 56
no password 29
overview 29
Password 29
with remote authentication 29

C
callback mechanism
core 46

change password
exposed APIs 62
overview 35
workflow 35

Customer Application Server 12
Customer Mobile Application 12
Customer Website 12

D
Dark mode support 59
device data collection
exposed APIs 63
overview 37

E
error management
core 46

exposed APIs
activation 48
authentication method 56
change password 62
core 45
device data collection 63
local authentication 52
local transaction 54
multi-user management 65
notification registration 49
remote authentication 50
remote transaction 51

external user authentication
workflow 32

F
features
activation 13
authentication method 29
change password 35
device data collection 37
local authentication 26
multi-user management 37
notification registration 15
Orchestration SDK, overview 12
remote authentication 18
remote transaction 22

Index
Orchestration SDK Integration Guide 66



I
integration steps
Android 39
iOS 42

iOS
supported versions 10

J
Java, supported platforms 10

L
local authentication
exposed APIs 52
overview 26
workflow 26

local transaction
exposed APIs 54
workflow 28

M
multi-user management
exposed APIs 65
overview 37

N
notification registration
exposed APIs 49
overview 15
workflow 16

notification registration, caution
notice 16

O
OneSpan Trusted Identity platform 12
orchestration
example 10

Orchestration SDK
features 12
integrating, Android 39
integrating, iOS 42

P
Push Notification Service 12

R
remote authentication
exposed APIs 50
overview 10, 18
workflow 19

remote transaction
exposed APIs 51
overview 22
workflow 23

S
supported platforms 10

U
User 12

W
warning management
core 46

workflows
activation 13

Index
Orchestration SDK Integration Guide 67



change password 35
external user authentication 32
local authentication 26
local transaction 28
notification registration 16
remote authentication 19
remote transaction 23

Index
Orchestration SDK Integration Guide 68


	1 Introduction
	2 What's new in the Orchestration SDK
	2.1  Version 5.10.1
	2.2  Previous versions

	3 Using the Orchestration SDK
	3.1  Overview of the Orchestration SDK
	3.2  Features of the Orchestration SDK

	4 Integrate the Orchestration SDK
	4.1  Integrating OneSpan Orchestration SDK with Android
	4.2  Integrating OneSpan Orchestration SDK with iOS

	5 Exposed APIs in the Orchestration SDK
	5.1  Core
	5.2  Activation
	5.3  Notification registration
	5.4  Remote authentication
	5.5  Remote transaction
	5.6  Local authentication
	5.7  Local transaction
	5.8  Authentication method
	5.9  Change password
	5.10  Device data collection
	5.11  Multi-user management

	Index

