(J OneSpan

Image Scanner SDK

Integration Guide

Version: 4.32

Copyright Notice

Copyright © 2013-2024 OneSpan North America, Inc. All rights reserved.

Trademarks

OneSpan™, DIGIPASS® and CRONTO® are registered or unregistered trademarks of OneSpan North America Inc.,
OneSpan NV and/or OneSpan International GmbH (collectively "OneSpan") in the U.S. and other countries.

OneSpan reserves all rights to the trademarks, service marks and logos of OneSpan and its subsidiaries.

All other trademarks or trade names are the property of their respective owners.

Intellectual Property

OneSpan Software, documents and related materials (“Materials”) contain proprietary and confidential information.
All title, rights and interest in OneSpan Software and Materials, updates and upgrades thereof, including software
rights, copyrights, patent rights, industrial design rights, trade secret rights, sui generis database rights, and all other
intellectual and industrial property rights, vest exclusively in OneSpan or its licensors. No OneSpan Software or Mater-
ials may be downloaded, copied, transferred, disclosed, reproduced, redistributed, or transmitted in any form or by
any means, electronic, mechanical or otherwise, for any commmercial or production purpose, except as otherwise
marked or when expressly permitted by OneSpan in writing.

Disclaimer

OneSpan accepts no liability for the accuracy, completeness, or timeliness of content, or for the reliability of links to
and content of external or third party websites.

OneSpan shall have no liability under any circumstances for any loss, damage, or expense incurred by you, your com-
pany, or any third party arising from the use or inability to use OneSpan Software or Materials, or any third party
material made available or downloadable. OneSpan will not be liable in relation to any loss/damage caused by modi-
fication of these Legal Notices or content.

Reservation

OneSpan reserves the right to modify these Notices and the content at any time. OneSpan likewise reserves the right
to withdraw or revoke consent or otherwise prohibit use of the OneSpan Software or Materials if such use does not
conform to the terms of any written agreement between OneSpan and you, or other applicable terms that OneSpan
publishes from time to time.

Contact us

Visit our website: https://www.onespan.com
Resource center: https://www.onespan.com/resource-center
Technical support and knowledge base: https://www.onespan.com/support

If there is no solution in the knowledge base, contact the company that supplied you with the OneSpan product.

Date: 2024-10-24

https://www.onespan.com/
https://www.onespan.com/resource-center
https://www.onespan.com/support

Contents

TINtrodUcCtion ... 1
2 What's new in the Image Scanner SDK ... 2
2. VErSION 4. 82,0 3
2. 2 PreVIOUS VOIS ONS L 5
3 Usage of the Image Scanner SDK ... 8
B OV IVIOW 9
3.2 Image Decoding Method for Android 12
3.3 Functions for Android [Deprecated] 13
3.4 Image Decoding Method for iOS ... 18
35 FUNCUIONS fOr 10S 19
4 Integrate the Image Scanner SDK ... 22
4.1 Integrate the Image Scanner SDK with Android ... 23
4.2 Integrate the Image Scanner SDKWiIth iOS 24

Tables

Table 1 Brror Coaes oo
Table 2: QRCodeScannerSDKConstants Properties for Android ...

Table 3: QRCodeScannerSDKConstants values for iOS

Procedures

To use the Image Scanner SDK in your Android project ...

To use the Image Scanner SDK in your iOS project ...

Introduction

Welcome to the Image Scanner SDK Integration Guide! This guide describes how to
integrate the Image Scanner SDK into any application.

This guide provides information about:
¢ Functions of the Image Scanner SDK, with parameter and method descriptions

¢ |Integration steps

What's new in the Image Scanner SDK 2

This section provides an overview of changes introduced in the Image Scanner SDK
to facilitate the integration of the SDK and provide information on backward com-

patibility.
2.1 Version 4.32.0 3
2.2 Previous versions 5

2.1 Version 4.32.0

2.1.1 Android

Deprecated class: QRCodeScannerSDKActivity
The QRCodeScannerSDKActivity class has been deprecated and will be removed in a
future release. Instead, use the decodeImage function in combination with Camera
X Image Analysis.

New function to decode bitmaps
A new function has been added to decode and process bitmaps for Cronto
images and QR codes.

Minimum supported version increased to Android 7 (APl 24)

The minimum supported version of the SDK has been increased to Android 7
with API level 24.

[INCO013764]-[MSS-10524] Out of bounds exception for Android media
image
Description: When using an Android media image for scanning a color QR code,

the SDK threw the out-of-bounds exception ArrayIndexOutOfBoundsException.

Status: This issue has been fixed. The image pre-processing has been refactored
and a new APl has been added for decoding bitmaps.

[INCO0012540]-[MSS-9023] Known issue for Cronto image processing on
DOOGEE devices

On certain DOOGEE devices, an issue prevents the Image Scanner SDK from
properly scanning and decoding Cronto images. Currently, the following devices
are reported to be affected:

e DOOGEE V Max EEA (Android 12)
e DOOGEE V30T

e DOOGEE S100

212 iOS

Minimum supported version increased to iOS 14

The minimum supported version of the SDK has been increased to iOS 14.

2.2 Previous versions

2.2.1 Version 4.31.0

Android
Target API level increased to Android 14 (API 34)

The target version of the SDK has been increased to Android 14 with API level 34.

2.2.2 Version 4.30.0

Android

Documented workaround for known issue with Samsung Galaxy A23

There is a known issue with the camera not recognizing Cronto images on the
Samsung Galaxy A23 and a workaround was documented. For more information,
see the Known Issues section in the release notes.

2.2.3 Version 4.29.0

i0S

Bitcode support has been eliminated

Following the deprecation of Bitcode by Apple, we no longer support and have
removed all Bitcode from the SDK framework.

2.2.4 Version 4.28.1

Target APl increased to 33

To meet new requirements for apps published on the Google Play Store, the tar-
get version of the SDK has been increased to Android 13 with API level 33. This
change is needed to avoid APK rejection caused by security issues found with
older API versions.

2.2.5 4.28.0

Android
Target API increased to Android 12 (API 31)

To meet new requirements for apps published on the Google Play Store, the tar-
get version of the SDK has been increased to Android 12 with API 31 or higher.
This change is needed to avoid APK rejection caused by security issues found
with the older API versions.

Minimum supported version increased to Android 6 (API 23)

The minimum supported version has been increased to fully support new fea-
tures and devices. Deprecated code has been replaced and simplified to be com-
patible with API 23 or higher.

i0S

Increased the minimum supported version to iOS 13

The minimum supported version has been increased to fully support all ARM64
devices and SwiftUl features. Deprecated code has been removed and replaced
with code fully supporting iOS 13 or higher.

Fixed internal error conversion issues

Error codes converted between Objective-C and Swift need to have the
NSCustomError setting implemented to display the correct value. Without this set-
ting, the wrong codes could be displayed from the enum. The setting has been
implemented in all the remaining error handling objects.

Change of framework name to MSSImageScanner

The framework name has been changed from ImageScannerSDK. xcframework to
MSSImageScanner.xcframework.

2.2.6 Version 4.27.1

i0S
APl updates — NSErrors API support for Objective-C added

The Objective-C API points no longer throw an NSException. All API points that pre-
viously would throw such an NSException now require an NSError pointer. If an error
occurs, it will be attached to the pointer that is provided as a parameter. Refer to
the Objective-C sample included in the product package for full code examples.

Usage of the Image Scanner SDK

This section contains an overview of the Image Scanner SDK and information
about the functions of the SDK.

3.1 Overview

3.2 Image Decoding Method for Android
3.3 Functions for Android [Deprecated]
3.4 Image Decoding Method for iOS

3.5 Functions for iOS

12

13

18

19

3

3.1 Overview

The Image Scanner SDK facilitates the Digipass application development: it provides
you with the image scanning functionality to capture QR codes and Cronto! images.
The Image Scanner SDK package includes the following:

e MSSImageScanner.xcframework for iOS

* QRCodeScannerSDK.aar for Android

The Image Scanner SDK can be used on a variety of devices and supports the fol-
lowing platforms:

Android devices:
e Minimum Android 7 (APl level 24)

¢ Target Android 14 (API level 34)

NOTE: The Image Scanner SDK does hot support some Doogee devices.

iOS devices:
e iOS 14 or higher
e Swift 5.0 or higher

e Xcode 15 or higher

NOTE: As of OneSpan Mobile Security Suite 4.20.0, the integration of the Image
Scanner SDK has changed for iOS. For more information, see 4.2 Integrate the
Image Scanner SDK with iOS.

ISpecific colorful cryptogram, similar to a QR code; used for visual transaction signing.

3.1.1 Image Requirements

The Image Scanner SDK requires the target image to meet the following require-
ments:

The image containing the QR code must be clear and well-focused.

The QR code should be in the center of the image.

The photo should not be taken too closely.

¢ The maximum width and height is 2048 pixels (applies to iOS only).

3.1.2 Exposed APIs

The Image Scanner SDK APIs are exposed as follows:

¢ Android: The APIs are exposed in the com.vasco.digipass.sdk.utils.qgrcodescanner
package.

3.1.3 Exception Management on Android

When an error occurs on Android, a QRCodeScannerSDKException is thrown. This exception
consists of an error code and, if the exception is an internal error, the cause of the
exception.

3.1.4 Error Codes

Table 1 lists the constants which can be retrieved from the QRCodeScannerSDKErrorCodes
class.

Table 1: Error Codes

Name Value Description

INTERNAL_ERROR -4500 Internal error.

INPUT_PARAMETER_NULL —4501 Call-back / delegate is null.
CAMERA_NOT_AVAILABLE -4502 Camera not present on the device.
PERMISSION_DENIED —4503 Permission to access the camera is not set.

10

Table 1: Error Codes (continued)

Name

NATIVE_LIBRARY_NOT_LOADED
INVALID_IMAGE
IMAGE_TOO_BIG

INVALID_CODE_TYPE

Value

~4504

—4505

-4506

—4507

Description

Native library has not been loaded (Android only).
Provided Image is invalid and cannot be decoded.
Provided image is too big to process (iOS only)

Provided code type is invalid and cannot be pro-
cessed.

CAUTION: To be able to access the camera of the device, you need to set the appro-

priate permissions in your application configuration.

For Android, you need to add the CAMERA and VIBRATE permissions to the

AndroidManifest.xml file.

L

3.2 Image Decoding Method for Android

The Android API contains a method to decode and view the results of the static
images in the Image Scanner SDK.

3.2.1 Image Decoding Method

The following method decodes the QR code in the image once it is detected:

public static QRCodeScannerSDKDecodingResultData decodeImage(Image image, int
codeType) throws QRCodeScannerSDKException, LinkageError

3.2.2 Obtain Decoding Results

After decoding the QR code in the image, the QRCodeScannerSDKDecodingResultData
obtains the results of the scan with the following methods:

public int getScannedImageFormat()

public String getScannedImageData()

12

3.3 Functions for Android [Deprecated]

The Android API consists of the QRCodeScannerSDKActivity class, which manages the
behavior of the Image Scanner SDK.

The Android API returns a result code to indicate if a scan has been successful.

3.3.1 Display the scan result

When a code is flashed, the QRcodeScannerSDKActivity class ends the scan process, and
the activity is closed with the following code:

resultCode == RESULT_OK
The scan result will be transmitted with the OUTPUT_RESULT key.

3.3.2 Cancel the scan process

When the back button is pressed, the QRCodeScannerSDKActivity instance is closed with
the following code:

resultCode == RESULT_CANCELED

3.3.3 Exception

If an error occurs, the caught exception is converted to a QRCodeScannerSDKException
object. The QRCodeScannerSDKActivity ends the process and returns the following code:

resultCode == RESULT_ERROR
The result of the scan will be transmitted with the OUTPUT_EXCEPTION key.

3.3.4 (QRCodeScannerSDKConstants for Android

The QRCodeScannerSDKConstants class contains the constants. The following table lists the
available constants and parameters.

13

Properties

Table 2: QRCodeScannerSDKConstants Properties for Android

Property Name

Android Extra Parameters

EXTRA_VIBRATE

EXTRA_CODE_TYPE

QR_CODE

EXTRA_SCANNER_OVERLAY

EXTRA_SCANNER_OVERLAY_
COLOR

CRONTO_CODE

Data Type

Boolean

int

int

Boolean

int

int

Android Return Parameters

Description

Indicates whether the device must vibrate
when a QR code is scanned.

Key value: extra_vibrate

Default value: true

Indicates which type of code can be parsed.
Key value: extra_code_type

Possible values are:

¢ QRCodeScannerSDKConstants.QR_CODE
e QRCodeScannerSDKConstants.CRONTO_CODE

e QRCodeScannerSDKConstants.QR_CODE +
QRCodeScannerSDKConstants.CRONTO_CODE

Default value: QRCodeScannerSDKConstants.QR_
CODE + QRCodeScannerSDKConstants.CRONTO_CODE

Indicates that the Image Scanner SDK must
parse the image to search QR codes.

Key value: 0x01

Indicates that a scanner overlay will be dis-
played in scan view.

Key value: extra_scanner_overlay

Default value: false

Indicates the color that will be applied in the
scanner overlay.

Key value: extra_scanner_overlay_color

Default value: 0x99000000

Indicates that the Image Scanner SDK must
parse the image to search Cronto images.

Key value: 0x02

14

Table 2: QRCodeScannerSDKConstants Properties for Android (continued)

Property Name Data Type Description

OUTPUT_RESULT String Result of the scan.

Key value: output_result

OUTPUT_EXCEPTION Exception Caught exception.

Key value: output_exception

OUTPUT_CODE_TYPE int Code type result.

Key value: output_code_type
Possible values are:

e QR_CODE

¢ CRONTO_CODE

RESULT_ERROR int Indicates whether an exception has been

thrown during the scanning process.

Key value: RESULT_FIRST_USER + 1

Example

01.| public void OnScanClicked(View v)

02. {

03.

04. // We want a vibration feedback after scanning

05. // Note that the vibration feedback is activated by default

06. intent.putExtra(QRCodeScannerSDKConstants.EXTRA_VIBRATE, true);

07.

08. // Indicate which sort of image we want to scan

09. intent.putExtra(QRCodeScannerSDKConstants.EXTRA_CODE_TYPE,
QRCodeScannerSDKConstants.QR_CODE +
QRCodeScannerSDKConstants.CRONTO_CODE);

10.

11. // Launch Image Scanner activity

12. startActivityForResult(intent, 1);

13.] }

15

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

@verride

protected void onActivityResult(int requestCode, int resultCode, Intent data)

{

switch (resultCode)

{

case RESULT_OK:

String result = data.getStringExtra
(QRCodeScannerSDKConstants.OUTPUT_RESULT);

int codeType = data.getIntExtra
(QRCodeScannerSDKConstants.OUTPUT_CODE_TYPE, 0);

// Convert the result
if (codeType == QRCodeScannerSDKConstants.CRONTO_CODE)
{
// we have scan a cronto code => convert the hexa string to string

byte[] tmp = hexaToBytes(result);

}
else if (codeType == QRCodeScannerSDKConstants.QR_CODE)

{

// we have scanned a QR code => display directly the result

resultTextView.setText(result);

16

Known Issue

CAUTION: Known issue with Samsung Galaxy A23

Due to a known issue with the camera on Samsung Galaxy A23, Cronto codes are not
decoded properly with the default resolution. The solution to this issue is to increase
the resolution using the following code snippet:

var imageAnalysisBuilder = ImageAnalysis.Builder().setTargetRotation(rotation)

// Set Resolution property only for Samsung Galaxy A23 model

if (Build.MANUFACTURER.equals("Samsung", true) && Build.MODEL.contains("A23")) {
imageAnalysisBuilder.setTargetResolution(Size (1080, 1920))

}

imageAnalysisBuilder.build().setAnalyzer(cameraExecutor, QrCodeAnalyzer())

17

3.4 Image Decoding Method for iOS

The iOS API contains a method to decode and view the results of the static images in
the Image Scanner SDK.

3.4.1 Image Decoding Method

The following method decodes the QR code in the image once it is detected.

In Objective-C:

+ (QRCodeScannerSDKDecodingResultData * _Nullable)decodeImage: (UIImage *)image
of Type: (int)codeType error:(NSError ** _Nullable)error;

In Swift:

public static func decodeImage(_ image: UIImage, codeType: CodeType) throws ->
QRCodeScannerSDKDecodingResultData

3.4.2 Obtain Decoding Results

After decoding the QR code in the image, the QRCodeScannerSDKDecodingResultData
obtains the results of the scan. The result contains the following fields.

In Objective-C:

int codeType;

NSString *result;
In Swift:

var codeType: CodeType

var result: String

18

3.5 Functions for iOS

The main entry is a UIViewController returned by the SDK. The following API is avail-
able to obtain the instance:

Swift:

01.| public class QRCodeScannerSDK {

02.| public static func getQRCodeScannerSDKViewController(delegate: ScannerDelegate,
vibrate: Bool, codeType: CodeType, image: UIImage?) throws -> UIViewController

03.| public static func getQRCodeScannerSDKViewController(delegate: ScannerDelegate,
vibrate: Bool, codeType: CodeType, image: UIImage?, scannerOverlay: Bool,
scannerOverlayColor: UIColor?) throws -> UIViewController

04.| public static var version: String

05.] }

Parameter details:

* vibrate: input parameter. The phone will vibrate when a QR code or a Cronto!
image has been flashed, if the corresponding option is configured. This option is
available when the vibrate input parameter is used.

e codeType: input parameter. The Image Scanner SDK can scan either the content of
the QR code or the Cronto image, or both. This option is available when the
codeType input parameter is used. Possible values are:

Swift:

CodeType.qrCode

CodeType.crontoCode

CodeType.all

The default value enables scanning for all types.

ISpecific colorful cryptogram, similar to a QR code; used for visual transaction signing.

e image: to customize the icon for canceling the scan process.

e delegate: protocol to manage the callbacks of the view controller instance
returned by the SDK. It contains three methods to manage the QR code scan-
ning process and must be implemented in your application.

e scannerOverlay: if set to YES, a scanner overlay is added to the scan view. By
default this overlay is disabled.

e scannerOverlayColor: To customize the color of the overlay. If set to null, the default
color (0x99000000) is used.

3.5.1 Display the scan result

This method is called when a code has been scanned, with the result of the scan as
the input parameter:

Swift:

func grCodeScannerSDKController(_ controller: UIViewController, didScan result:

String, codeType: CodeType)

3.5.2 Cancel the scan process

When the end user presses the relevant icon, qrCodeScannerSDKControllerDidCancel is
called, which closes the image scanner:

Swift:

func grCodeScannerSDKControllerDidCancel(_ controller: UIViewController)

3.5.3 Exception

When an exception is thrown during the scan process, the callback threwException is
called:

Swift:

func grCodeScannerSDKController(_ controller: UIViewController, didReceive

error: ScannerError)

20

3.5.4 Example

A sample application Swift is provided along with this package.

3.5.5 QRCodeScannerSDKConstants for iOS

The QRCodeScannerSDKConstants file contains the constant, fixed values for the Image
Scanner SDK in iOS.

Table 3: QRCodeScannerSDKConstants values for iOS

Value Description
QRCodeScannerSDKConstants_ 2048 Indicates the maximum width and height of a
IMAGE _MAX_SIZE decoded image, in pixels.

21

Integrate the Image Scanner SDK 4

4.1 Integrate the Image Scanner SDK with Android 23

4.2 Integrate the Image Scanner SDK with iOS 24

22

4.1 Integrate the Image Scanner SDK with Android

This procedure allows you to integrate and use the Image Scanner SDK in your
Android project.

» To use the Image Scanner SDK in your Android project

1. Copy QRCodeScannerSDK.aar from the OneSpan Mobile Security Suite to the libs
folder.

2. Declare QrScannerSDKActivity in your application manifest (refer to the Image Scan-
ner SDK sample for details).

3. Add a dependency on the official ZXing wrapper to your project, using
io.github.zxing-cpp:android:2.2.0.

NOTE: To be able to access the camera, you need to set the appropriate permissions
in your application configuration. The CAMERA and VIBRATE permissions must be
added to the AndroidManifest.xml file.

For applications that target API 23 and run on Android 6.0+, the CAMERA permission
must be explicitly requested at runtime. Refer to the Android sample for more details.

For applications that target an API earlier than 23 and run on Android 6.0+: If the user
first grants permission upon installation and then denies the permission in the device
settings, the Image Scanner SDK may not work as expected (as indicated by the
Android system).

You are now ready to use the Image Scanner SDK. For more information how to integ-
rate the functions, see 3.2 Image Decoding Method for Android and 3.4 Image
Decoding Method for iOS.

23

io.github.zxing-cpp:android:2.2.0

4.2 Integrate the Image Scanner SDK with iOS

This procedure allows you to integrate and use the Image Scanner SDK in your iOS
project.

» To use the Image Scanner SDK in your iOS project

1. Link MSSImageScanner.xcframework from the OneSpan Mobile Security Suite package
to your Xcode project (linked framework and libraries).

2. Link the following libraries from the iOS SDK to your Xcode project with the Link
Binary With Libraries build phase:
e Libiconv

e libc++ (only required if the project is compiled in Objective-C and not in
Objective-C++)

NOTE: xcFramework is compatible with Xcode 11 and later. We strongly recommend
using XCFramework, as it facilitates the archiving of projects and it works with sim-

ulators.

CAUTION: Your project must be compiled with the libc++ standard library.

CAUTION: In iOS 10, NSCameraUsageDescription is mandatory and must be added to
the .plist file of the project.

CAUTION: If you use Swift, your project must be linked with the -0jbC flag. This
should be set in Other Linker Flags in the target's build settings. In a pbxproj project
file, the raw key is OTHER_LDFLAGS.

You are now ready to use the Image Scanner SDK. For more information how to integ-
rate the functions, see 3.5 Functions for iOS.

24

Index

A

Android
decoding results 12
exceptions 13
exposed APIs 10
functions 13
image decoding 12
integrate the SDK 23
QRCodeScannerSDKConstants 13,
21
QRCodeScannerSDKConstants,
example 15
required permissions T
scan process, cancel 13
scan process, display 13
supported versions 9
APl 19

C

cancel scan process, Android 13
cancel scan process, iOS 20

D

display scan process, Android 13
display scan process, iOS 20

E

error codes, QRCodeScan-
nerSDKErrorCodes class 10

exception management, QRCodeScan-
nerSDKException 10

F

functions
Android 13
iOS 19

image decoding
Android 12
iOS 18
Image requirements 10
integration steps
Android 23
i0OS 24
i0S
exceptions 20
functions 19
image decoding 18
integrate the SDK 24
integration, caution notice 24
grCodeScannerSDKController,
example 21
scan process, cancel 20
scan process, display 20
supported versions 9
version 10 integration, caution
notice 24

25

M T

methods threwException callback, iOS 20
Android 12
iOS 18

o)

OUTPUT_EXCEPTION key, Android 13
OUTPUT_RESULT key, Android 13

P

package content 9

Q

QRCodeScannerSDK Constants
class 13, 21

QRCodeScannerSDKActivity,
Android 13

QRCodeScan-
nerSDKControllerDidCancel
method, iOS 20

QRCodeScannerSDKErrorCodes
class 10

QRCodeScannerSDKException 10

QRCodeScannerSDKException object,
Android 13

R

results
image decoding 18

S

supported platforms 9

26

	1 Introduction
	2 What's new in the Image Scanner SDK
	2.1 Version 4.32.0
	2.2 Previous versions

	3 Usage of the Image Scanner SDK
	3.1 Overview
	3.2 Image Decoding Method for Android
	3.3 Functions for Android [Deprecated]
	3.4 Image Decoding Method for iOS
	3.5 Functions for iOS

	4 Integrate the Image Scanner SDK
	4.1 Integrate the Image Scanner SDK with Android
	4.2 Integrate the Image Scanner SDK with iOS

	Index

